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Executive Summary 

The Moderate Resolution Imaging Spectroradiometer (MODIS) semi-analytical (SA) algorithm calculates the 
spectral absorption properties of surface waters, splitting them into those associated with phytoplankton, 
%h(h), colored dissolved organic matter or gelbstoff, a&), and water, a,,,@). The SA algorithm is designed to 
respond to variable ratios of +I,@) to a&) and to wide ranges in the chlorophyll-specific phytoplankton 
absorption coefficient, a*,&), for a given chlorophyll-a level. 

The gelbstoff absorption coefficient (absorp-coefxelb, parameter 30) can be used to map river plumes, 
determine diffuse attenuation coefficients, and calculate dissolved organic carbon (DOC) standing stocks and 
fluxes. The phytoplankton absorption coefficient, +h(675) (chlor-absorb, parameter 3 l), is used to derive 
the concentration of chlorophyll-a (Chlor-a-3, parameter 27), a measure of the standing stock of living ocean 
carbon. QuantirLing both phytoplankton and gelbstoff absorption coefficients accurately from space is 
critical for evaluating the global oceanic carbon budget. 

The SA algorithm also outputs total absorption coefticients, a(&) (tot-absorb, parameters 32-36) at i412 ,  
443,488, 531, and 551nm which are used in the calculation of the absorbed radiation by phytoplankton 
(ARP, parameter 29). ARP is needed to convert fluorescence line height (FLH; see M. Abbott MODIS 
ATBD) into a value that represents the chlorophyll fluorescence efficiency (CFE) of the phytoplankton. In 
turn, CFE may be inversely proportional to the quantum yield of photosynthesis. While the use of FLH and 
CFE in estimating photosynthetic rates is the subject of much debate, the possibility of using satellites to 
measure primary production is enticing. The absorbed radiation by phytoplankton is also dependent upon the 
instantaneous photosynthetically available radiation (IPAR, parameter 28) (Gregg and Carder, 1990). 

The following website can be referred to for information regarding the ARP and IPAR data products: 
httD://modis.gsfc.nasa.gov/data/atbd/atbd mod20.Ddf. Data quality summaries for ARP and IPAR can be 
found at httD://modis-ocean.psfc.nasa.nov/aa/. Briefly, however, we found that MODIS Terra IPAR data are 
consistent with our May 2000 measurements in the Bahamas. MODIS Terra data at the Hawaii Ocean Time 
Series (HOTS), Bermuda Atlantic Time-series Study (BATS), and Hawaii’s Marine Optical Buoy (MOBY) 
sites are now being outputted for future data comparisons. Values within 5% are expected. 

Unlike accuracy estimations for IPAR, assessing the accuracy of MODIS-derived ARP values is not directly 
achievable. This is because field measurements of both a&) and IPAR are typically not available for testing 
algorithm performance. Indirect evaluations of ARP have been made, however, based on ship radiometry of 
ARP components. If accuracies of -7% are attributed to IPAR, -30% to (Carder et al., 1999), and 10% 
to diffuse attenuation, then the root-mean sum of squares of the error sources provides an error estimate for 
ARP of -32%. 

Since, chlorophyll-a concentration is the most widely used product derived from ocean-color data, the rest of 
this document focuses on the algorithm development, updates, and validation efforts of the semi-analytically 
derived MODIS ocean data product, Chlor-a-3. Chlor-a-3 retrievals from field water-leaving radiance data 
have successfully been validated to within about 25%. Thus, the 35% accuracy goal established by the ocean 
color community, based upon a goal of 5% accuracy for normalized water-leaving radiance values, has been 
achieved. Accuracies of -30% for qh(675) and -40% for a&400) were calculated previously by Carder et al. 
(1999). Here, we use data accuracies for Chlor-a-3 as aproxy for %h(675) and q400)  accuracies, since field 
measurements of %h(675) and a&400) are scarce. 

The following Algorithm Theoretical Basis Document (ATBD- 19) is considered a so-called “living” 
document because it tracks the changes that have occurred to the semi-analytical algorithm since the contract 
began. 



The algorithm was first developed (Section 3) and evaluated (Section 4) using tropicaYsubtropica1 and 
summer temperate field data. Algorithm parameters for three bio-optical domains (unpackaged, global, and 
packaged) were developed to contend with the ten-fold variability observed globally in chlorophyll-specific 
phytoplankton absorption coefficients. A strategy for transitioning between these bio-optical domains based 
on comparisons between satellite-retrieved sea surface temperatures and nitrate depletion temperatures (NDT) 
was introduced and tested in Section 5 .  Algorithm errors of more than 45% were reduced to less than 30% 
with this approach. 

Access to data deposited by the Ocean color community into the SeaWiFS Bio-optical Archive and Storage 
System (SeaBASS) later led to the expansion ofbio-optical domains into high-latitude, polar regions (Section 
6). A set of “fully-packaged” algorithm parameters was developed in this section along with an updated 
NDT-based blending strategy to smoothly transition between the “old” unpackaged and the “new” fully- 
packaged pigment domains. Chlorophyll concentrations underestimated by as much as factor of two using 
empirical algorithms tuned to tropical, subtropical, and temperate waters could now be derived more 
accurately using this semi-analytical approach. 

With the launch of MODIS Terra in December 1999 and the release of Collection 4 ocean color data products 
in June 2002, validation of MODIS radiances and radiance-derived chlorophyll-a concentrations was 
permitted. Match-up comparisons have recently been made between both MODIS-derived semi-analytical 
(Chlor-a-3) and empirical (Chlor-a-2) chlorophyll-a concentrations and field data using reprocessed “004” 
(Section 7) and reprocessed “041” (Section 8) MODIS Terra data. 

Using MODIS Terra (Collection 4, reprocessing 04 1) normalized water-leaving radiance data, field 
chlorophyll-a concentrations from the SeaBASS data archive were compared to the Chlor-a-2 and Chlor-a-3 
data products. The chlorophyll algorithms were assessed first using field radiance values and then using 
satellite radiance values. Chlor-a-2 and Chlor-a-3 retrieval errors using field radiance data were 52% and 
25%, respectively. The retrieval errors using MODIS Terra radiance values increased to 56% and 48%, 
respectively. 

Error simulations indicate that the increased Chlor-a-3 error observed when switching from field to satellite 
radiance data can partially be explained by errors observed in retrieving normalized water-leaving radiances 
for each of the 412,443, and 55 1 nm wavebands. In order for MODIS radiance derived Chlor-a-3 values to 
be accurate within the 35% accuracy goal, normalized water-leaving radiance error levels less than 14% are 
required from each waveband. 

In addition, MODIS retrievals of Chlor a 3 may improve with a) the addition of more open-ocean match-up 
data, b) a better filter for flagging and possibly correcting absorbing aerosols under coastal andor dust-rich 
atmospheres, and c) improved polarization corrections. Regarding match-up imagery, changing 3-by-3 pixel 
medians at scene edges where chlorophyll-a concentrations are not patchy to 5-by-5 pixel means may reduce 
detector-striping and side-banding effects that can decrease algorithm accuracies. 

The algorithm development and validation work using field data (Sections 3-5) has been peer-reviewed and 
published in Carder et al. (1 999). Similarly, the expansion of bio-optical domains into high latitude regions 
along with the initial match-up analysis using MODIS Terra reprocessed 004 data (Sections 6 -7) has also 
been peer-reviewed and was recently published in Carder et al. (2004). 

In Section 10, we list the “lessons learned” throughout the course of this contract. Primarily, we learned the 
following: 1) overestimations in empirically-derived chlorophyll-a concentrations (e.g. Chlor-a-2) caused by 
CDOM can be avoided using a semi-analytical approach capable of separating the absorption spectra of 



CDOM and phytoplankton and 2) underestimations in Chlor-a-2 by a factor of two compared to field and 
Chlor-a-3 data can occur in upwelling and high-latitude regions if low chlorophyll-specific absorption 
coefficients found in this region are not considered. 

One final note, since errors associated with the empirical Chlor-a-2 algorithm when applied to field radiances 
are significantly greater than 35%, no amount of error reduction in satellite-derived, normalized water-leaving 
radiances will reduce Chlor-a-2 retrievals to 35%. Thus, it is strongly urged that the ocean color community 
continue to generate a MODIS Chlor-a-3 data product and reprocess SeaWiFS data (1997-present) using 
AVHRR sea surface temperature data and the Chlor-a-3 algorithm in order to achieve a long-term climate- 
quality global data set for ocean chlorophyll-a and derived products such as primary productivity, 
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1.0 Introduction 

The Case 2 chlorophyll a algorithm is based on a semi-analytical, bio-optical model of remote- 

sensing reflectance, R,(h), where R&) is defined as the water-leaving radiance, I.,&), divided by the 

downwelling irradiance just above the sea surface, E&O+). 

variables, the absorption coefficient due to phytoplankton at 675 nm, a,(675), and the absorption 

coefficient due to colored dissolved organic matter (CDOM) or gelbstoff at 400 nm, %(400). The R, 

model has several parameters that are fured or can be specified based on the region and season of the 

MODIS scene. These control the spectral shapes of the optical constituents of the model. R,(hi) values 

from the MODIS data processing system are placed into the model, the model is inverted, and a,(675), 

%(400) (MOD24), and chlorophyll a (MOD21, Chlor-a-3) are computed. 

The R,(h) model (Section 3) has two free 

The algorithm also outputs both the total absorption coefficients, a(k) (MOD36), and permits 

calculation of the phytoplankton absorption coefficients, %(hi) (MOD36), based on ~ ~ ( 6 7 5 )  retrievals. 

These are used in the calculation of the absorbed radiation by phytoplankton (MOD22) for use in the 

calculation of chlorophyll fluorescence efficiencies (MOD20). MOD22 is also dependent upon the 

instantaneous photosynthetically available radiation (MOD22), which is discussed in ATBD20. 

Algorithm development is initially focused on tropical, subtropical, and summer temperate 

environments, and the model is parameterized in Section 4 for three different bio-optical domains: (1) 

high ratios of photoprotective pigments to chlorophyll and low self-shading, which for brevity, we 

designate as “unpackaged”; (2) low ratios and high self-shading, which we designate as “packaged”; and 

(3) a transitional or global-average type [Carder et al., 19991. These domains can be identified from space 

by comparing sea-surface temperature to nitrogen-depletion temperatures for each domain (Section 5). 

Algorithm errors of more than 45% are reduced to errors of less than 30% with this approach, with the 

greatest effect occurring at the eastern and polar boundaries of the basins. Section 6 provides an 

expansion of bio-optical domains into high-latitude waters. The ‘‘fully packaged” pigment domain is 

introduced in this section along with a revised strategy for implementing these variable packaging 

domains [Carder et al., 20041. Chlor-a-3 values derived semi-analytically and Chlor-a-2 values derived 

empirically using the O’Reilly et al. (2000) OC3M algorithm fi-om MODIS Terra radiances are compared 

to field chlorophyll-a concentrations in Sections 7 and 8. 

2.0 Overview and Background Information 

According to the optical classification by Morel and Prieur [ 19771, oceanic waters may be 

characterized as Case 1, in which the optical properties are dominated by chlorophyll and covarying 

detrital pigments, or as Case 2, in which other substances, which do not covary with chlorophyll, also 
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affect the optical properties. Such substances include gelbstoff, suspended sediments, coccolithophores, 

detritus, and bacteria. Pigment retrievals from Coastal Zone Color Scanner (CZCS) data in Case 1 waters 

have achieved reasonable results (* 40% for local best cases [Gordon et al. , 19831). However, substances 

not covarying with chlorophyll in Case 2 waters have caused the retrieval of pigment concentrations to 

have inaccuracies as high as 133% [Carder et al., 19911. 

CDOM absorbs light in an exponentially decreasing manner as a h c t i o n  of wavelength. 

Pheopigments, detritus, and bacteria similarly absorb more strongly at 4 12 nm than they do at 443 nm. 

Phytoplankton, on the other hand, absorb more strongly at 443 nm than at 412 nm. Thus, by measuring 

the relative amounts of light leaving the sea surface at those two wavelengths, we can estimate the relative 

amounts of phytoplankton and the other absorbing products mentioned above. 

Winter convective over turn of the upper ocean layer also mixes up gelbstoff-rich deeper waters 

that have not been photo bleached unlike summer surface waters. These waters appear in CZCS data as 

being more chlorophyll-rich than measurements and models indicate [Siegel and Michaels, 19961. 

The remote sensing reflectance, &, model used to develop the algorithm presented here has a few 

parameters that cannot be fmed and applied to the entire globe; that is, they are site- and season-specific. 

This is due to the inherent variability of many bio-optical constituents. For example, absorption at 440 

nm per unit chlorophyll a by phytoplankton can change with species and with nutrient and lighting 

conditions by more than an order of magnitude [Morel and Bricaud, 198 1 ; Kirk, 1983; Carder et al., 

199 1 ; Morel et al., 1993; Bricaud et al., 19951. In addition, particle size and concentration have 

significant effects on the spectral backscattering coefficient b&) of ocean water: pure water backscatter 

varies as - La, large-particle backscatter varies as - La, and backscatter by smaller-diameter detritus and 

bacteria varies with a spectral dependence between the two extremes [Morel and Ahn, 1990,199 11. 

Many of these factors covary, allowing the simple wavelength-ratio algorithms of the CZCS 

[Gordon and Morel, 19831 to work fairly well. We have tried to understand many of these individual 

covariances and have developed empirical expressions for several individual bio-optical variables. By 

analyzing individual components of the model, we can gain a deeper understanding of the processes 

affecting the color of water-leaving radiance. 

To the extent that such covariances change with season or bio-optical domains [e.g., see Prieur 

and Sathyendranath, 1981; Sathyendranath et al., 1989; Mitchell and Holm-Hansen, 19911, we must 

consider temporal and spatial changes in algorithm parameterization. A strategy for partitioning the ocean 

into at least three different bio-optical domains on the basis of nutrient-temperature relationships, each 

with different model parameters, is discussed in Section 5. Section 6 provides an expansion of bio-optical 

domains from mainly tropical, subtopical, and summer temperate environments into high-latitude waters. 
2 



2.1 Experimental Objective 

The main data product is chlorophyll a concentration, [chl a], which can be used as an indicator 

of plankton biomass, as an input to primary production models (MOD27), or to trace oceanographic 

currents, jets, and plumes. Other output products are %(675), %(400), a,+,(&), and a(&). Total absorption, 

a(&), is necessary for calculating the light absorbed with depth for heat budget models. %(&) is used in 

the IPAIUARP MODIS algorithm (MOD22). a.&400) by itself can be used to map river plumes, to 
determine diffuse attenuation at that wavelength, or to calculate dissolved organic carbon (DOC) standing 

stocks and fluxes. In order to calculate DOC, we need to know how DOC concentration is related to 

DOC absorption. As coastal, estuarine, and other Case 2 environments become increasingly recognized 

as important areas of study, algorithms that can deal with the complex bio-optical properties of these 

regions will become available. 

2.2 Historical Perspective 

CZCS algorithms for estimating [chl a] plus pheophytin a concentrations perform quite well for 

regions of the ocean where scattering and absorbing components of seawater covary with these pigments, 

Le., in Case 1 waters [Gordon and Morel, 1983; Gordon et al., 19833. A number of empirical and semi- 

analytical optical models have been developed to simulate the behavior of the underwater light field for 

such waters [Morel and Prieur, 1977; Baker and Smith, 1982; Gordon et al., 1988; Morel, 1988; Mitchell 

and Holm-Hansen, 1991,O Reilly et al., 19981. Such models have been used as the basis for classifying 

water types and/or for developing remote sensing algorithms. 

However, the accuracies of these models decrease when environmental conditions depart from 

those representative of the data set used to empirically derive the covariance relationships. For instance, 

CDOM is produced when grazing, photolysis, and other mechanisms degrade the viable plant matter at 

and downstream from phytoplankton blooms. The CDOM-to-chlorophyll ratio will change dramatically 

for a parcel of upwelled water over a relatively short time, from chlorophyll-rich and CDOM-poor during 

a bloom to CDOM-rich and chlorophyll-poor after being grazed down. Solid evidence for the occurrence 

of this scenario can be found in two separate studies. Peacock et al., [ 19881 found that absorption 

attributed to CDOM at 440 nm was at least 16 fold that due to phytoplankton pigments within an offshore 

jet from an upwelling region, whereas pigments were the dominant absorption agents at the upwelling 

center near the coast. Similarly, Carder et al., [1989] found that particulate absorption at 440 nm 

decreased 13 fold while CDOM absorption at 440 nm increased by 60% in ten days for a phytoplankton 

bloom tracked from the Mississippi River plume to Cape San Blas. This widely varying CDOM-to- 

chlorophyll ratio has a profound effect on upwelled radiance in the blue 443 nm band of the CZCS, and a 
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smaller but still significant effect in the green 520 nm band. For CDOM-rich waters, the correspondence 

in absorption at 443 nm and 520 nm between CDOM and chlorophyll creates erroneously high estimates 

of pigment concentration in those models which rely solely upon either of these spectral bands to indicate 

absorption due to phytoplankton. 

Carder et al., (1 99 1) proposed that a short wavelength channel at around 4 10 nm could be used to 

distinguish CDOM (and other degradation products) from chlorophyll. Data for a channel at 412 nm is 

available not only for MODIS, but also for Ocean Color and Temperature Scanner (OCTS) and Sea- 

Viewing-Wide-Field-Sensor (SeaWiFS) imagery. 

2.3 Instrument Characteristics 

The algorithm requires input of the water-leaving radiance, L,, at the MODIS ocean wave bands 

centered at 412,443,488, and 551 nm, respectively, and bio-optical domains are designated based upon 

sea-surface temperature (Section 5), a derived product of MODIS. R, is derived from the water-leaving 

radiance L, [Gordon and Wang, 19941, as R, = I ( F o  cos 8 fd)", where Fo is the extraterrestrial solar 

irradiance, 8 is the solar zenith angle, and fd is the transmittance of light across the air-sea interface. The 

1000 m resolution, new spectral bands, and near-daily coverage of MODIS will allow the observation of 

mesoscale oceanographic features in coastal and estuarine environments, areas seen to be increasingly 

important in many marine science studies in addition to traditional open-ocean observations. 

3.0 Algorithm Description 

Morel and Gordon [ 19801 describe three approaches to interpret ocean color data in terms of the 

in situ optical constituents: empirical, semi-empirical, and analytical. In the analytical approach, radiative 

transfer theory provides a relationship between upwelling irradiance or radiance and the in situ inherent 

optical properties backscattering and absorption [e.g., Sathyendranath and Platt, 19971. Then, constituent 

concentrations are derived fiom irradiance or radiance values measured at several wavelengths by 

inversion of the resultant system of equations. The MODIS algorithm uses this approach, with the term 

"semi-analytical" invoked because bio-optical pieces of the radiative model are expressed by empirical 

relationships. The algorithms developed herein have been peer-reviewed and appear in condensed form in 

Carder et al., [ 19993 and Carder et al., [2004]. 

3.1 Theoretical Description 

3.1.1 Physics of Problem 
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After light enters the ocean, some of it eventually scatters back up through the surface. This light 

is called the water-leaving radiance MA), and it can be deduced fiom space after removal of atmospheric 

effects. The magnitude, spectral variation, and angular distribution of this radiance depend on the 

following factors: the absorption and backscattering coefficients of the seawater, a(h) and b&), 

respectively (known as the inherent optical properties); the downwelling irradiance incident on the sea 

surface Ed(l,03; and the angular distribution of the light within the ocean. To make things easier, we 

divide seawater into three components, each one having distinct optical properties of its own. These 

components are the seawater itself (water and salts), the particle fraction, and the dissolved fraction. 

Fortunately, a@) is simply equal to the sum of the absorption coefficients for each component, and b(h)  

is equal to the sum of the backscattering coefficients. If we can accurately describe or model each 

spectrally distinct component of the absorption and backscattering coefficients, then we can determine the 

magnitude of each one fiom measurements of L&) and Ed(O+,h), given some assumptions about the 

angular distribution of light in the water. The key here is to accurately model the spectral behavior of a(h) 

for each component. The spectral behavior of b ( h )  is not as dynamic. 

3.1.2 Mathematical Description of Algorithm 

3.1.2.1 R, Model 

The R, model is given by the following general equation, which is adapted fiom Lee et al., 

[ 19941: 

where f is an empirical factor averaging about 0.32-0.33 [Gordon et al., 1975; Morel and Prieur, 1977; 

Jerome et al., 1988; Kirk, 19911, t is the transmittance of the air-sea interface, Q(h) is the upwelling 

irradiance-to-radiance ratio &(h)/LU(h), and n is the real part of the index of refraction of seawater. By 

making three approximations, Eq. 1 can be greatly simplified. 

1) In general, f is a function of the solar zenith angle, €lo [Kirk, 1984; Jerome et al., 1988; Morel 

and Gentili, 19911. However, Morel and Gentili 119931 have shown that the ratio f/Q is relatively 

independent of eo for sun and satellite viewing angles expected for the MODIS orbit. They estimate that 

f/Q = 0.0936,0.0944,0.0929, and 0.0881, (standard deviation f 0.005), for h = 440,500, 565, and 665 

nm, respectively. Also, Gordon et al., [1988] estimates that E/Q = 0.0949, at least for 00 2 20". Thus, we 

assume that UQ is independent of h and €lo for all MODIS wavebands of interest, except perhaps for the 
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band centered at 667 nm, which we don't use. 

2) t2/n2 is approximately equal to 0.54, and although it can change with sea-state (Austin, 1974), 

it is relatively independent of wavelength. 

3) Many studies have confirmed that b&) is usually much smaller than a(h) and can thus be 

safely removed from the denominator of Eq. 1 [Morel and Prieur, 1977; references cited in Gordon and 

Morel, 19831, except for highly turbid waters. 

These three approximations lead to a simplified version of Eq. 1, 

where the "constant" is unchanging with respect to h and eo. The value of the constant is not relevant to 

the algorithm since, as will be shown later, the algorithm uses spectral ratios of R,(h) and the constant 

term factors out. 

In the following sections, both b(h)  and a(h) will be divided into several separate terms. Each 

term will be described empirically. The equations are written in a general fashion - i.e., the empirically 

derived parameters that describe each term are written as variables - and the actual values of the 

parameters that are used in the algorithm are shown in Tables la  and lb. 

3.1.2.2 Backscattering Term 

The total backscattering coefficient, b&), can be expanded as 

where the subscripts "w" and "p" refer to water and particles, respectively. bI,,(h) is constant and well 

known [Smith and Bakr, 19811. bp(h) is modeled as 

551 
bbp [ n] (4) 

The magnitude of particle backscattering is indicated by X, which is equal to bp(55 l), while Y describes 

the spectral shape of the particle backscattering. 

Lee et al., [1994] empirically determined X and Y values by model inversion using a formula 
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similar to (4). The X and Y values were compared to the R&) values measured at each station with the 

purpose of finding empirical relationships for both X and Y as a function of R&) at one or more of the 

MODIS wavelengths. Once this was done, X and Y could be estimated from MODIS data. These 

empirical relationships are described below. 

Table la. Wavelength-dependent parameters for the semi-analytical chlorophyll algorithm for regions 
without packaged pigments. 

h 412 

bW(m-') I 0.003341 

a2 -0.5 

a3 I 0.0112 

443 I 488 I 551 

0.002406 I 0.001563 I 0.000929 

0.00742 0.0 1632 0.05910 

0.80 0.59 -0.22 

-0.5 -0.5 -0.5 

0.01 12 0.01 12 0.01 12 

Table lb. Wavelength-independent parameters for the semi-analytical chlorophyll algorithm for 
regions without packaged pigments. 

a I wavelength independent parameters 

3.1.2.2.1 Expression for X 
The general expression for X is 

where & and XI are empirically derived constants. Linear regression performed on the derived values of 

X vs. R4551) taken from four cruises to the Gulf of Mexico (CP92, Tambax 2, GOMEX, and COLOR) 

resulted in XO and X1 values of -0.00182 and 2.058 (n = 53, 

graphically. If X is determined to be negative from Eq. 5 it is set to zero. 

= 0.96). Figure 1 shows the regression 
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o GOMEX 

COLOR 
+ TAMBAX 2 , 

0.015 

t ,  0.005 , 
8' 

,xX 

0.000 0.002 0.004 0.006 0.008 
R,(551), l/ster 

Figure 1. X versus R,(551), where X is the magnitude of particle 
backscattering and R, is the remote sensing reflectance at 551nm. 
The line is the linear regression equation X=0.00182 + 2.058 
& ( S i )  (n=53,?=0.96). 

The values of XO and XI that are used in this version of the Case 2 chlorophyll algorithm are 

probably adequate for most of the globe and they are listed in Table 1. For regions influenced by river 

outflows, these parameters should be determined on a site-specific basis. 

3.1.2.2.2 Expression for Y 

Y was found to covary in a rather general way with the ratio &(443)&(488). Variations in 

numerator and denominator values of this ratio are largely determined by absorption due to phytoplankton 

and CDOM. Absorption due to water is about the same and low at both wavelengths. Thus, to the extent 

that phytoplankton and CDOM absorption covary, the spectral ratio of the absorption coefficients, 

a(443)/a(488), will be only weakly dependent on pigment concentration, and the spectral ratio of 

backscattering coefficients should have a significant effect on the spectral ratio of &. Y is thus 

represented as 

a linear function of R,(443)&(488) where YO and Y1 are empirically derived constants. 

Accurate measurements of a&) and accurate removal of reflected skylight from the R, 
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measurements are critical in determining Y by model inversion. Only data from the GOMEX and 

COLOR cruises are used here because the a@) values were determined with a long-path 

spectrophotometer [Peacock et al., 19941. Linear regression of Y versus R,(443)/Rm(488) for stations 

from these two cruises resulted in YO and YI values of -1.13 and 2.57 (n = 22,? = 0.59). Figure 2 shows 

o GOMEX 
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0,' 0 
> 1.5 - 

0 

J O  
1.0 - 0 O r '  0 

, ' 0  
0 
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Figure 2. Spectral shape of particle backscattering Y versus 
&(443)&(488). The line is the linear regression Y = -1.13 + 
2.57 %(443)&(488) ( ~ 2 2 ,  ?=0.59). 

the regression graphically. If Y is determined to be negative from Eq. 6 it is set to zero. A number of 

other spectral ratios of R,(3c) were tested, but the 443:488 ratio had the highest correlation with Y. 

The Y parameter should be large when the backscattering is due to small particles andor water 

and vice versa [Gordon and Morel, 19831. In oligotrophic regions we have determined values of Y 

greater than 2, while in waters with [chl a] > 10 mg m-3 the estimated Y values are often = 0. Where 

gelbstoff concentrations are high, nutrients are typically high, and pigments are more packaged. Larger 

particles and lower Y values are expected to occur here, even with a lack of covariation between pigment 

and gelbstoff absorption. 

3.1.2.3 Absorption Term 

The total absorption coefficient can be expanded as 
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where the subscripts "w", "q," "d," and "g" refer to water, phytoplankton, detritus, and CDOM ("g" stands 

for gelbstom. Here a&) is taken from Pope and F v ,  [ 19971. Expressions for a&), a&), and a&) 

need to be developed. 

3.1.2.3.1 Expression for ~1 

The shape of the a&t.) spectrum for a given water mass will change due to the pigment-package 

effect (i.e., the flattening of absorption peaks due to self-shading with increasing intracellular pigment 

concentration and larger cell size) [Morel and Bricaud, 19811 and changes in pigment composition. For a 

given domain, normalizing measured a&) curves to h(675) reduces the dynamic range and results in a 

smooth variation for a.&)/h(675) vs. q(675) for the MODIS wavebands centered at h = 412,4-43,488, 

and 55 1 nm (see Figure 3) data for two high-light, subtropical regimes. To the extent that [chl a] is 

proportional to q(675) (e.g. see Figure 4), Figure 3 demonstrates how the chlorophyll-specific absorption 

changes with chlorophyll concentration. 

A hyperbolic tangent function was chosen to model this relationship in order to ensure that the 

value of a&)/q(675) approaches an asymptote at very high or very low values of q(675). Carder e? al., 

[ 19911 detail the behavior of this function with parameterization, although we have substituted q(675) for 

the [Chl a] found in their expression. Using logarithmic scaling for both axes results in the following 

model equation for a&) as a function of q675) ,  

where the parameters a&) to a3(h) are empirically determined for each MODIS wavelength of interest. 

a@) is the most important of these parameters, as it is directly proportional to a,&). For simplicity, only 

a&) and al(h) are varied to parameterize +(I), with a@) and a3(h) being set to the constant values of 

-0.5 and 0.01 12, respectively. Figure 3 shows the measured data and the modeled curves for a&) 

measurements taken fiom the GOMEX, COLOR, and TN048 cruises all considered to be part of the same 

high-light, subtropical domain (TN048 was an expedition to the Arabian Sea during monsoon conditions). 

The parameters a&) to a3(h) are listed in Table la. 

3.1.2.3.2 Expression for a,, and ag 
The a&) and a&) can both be fit to a curve of the form ax@) = ax(400) exp[-Sx(h-400)] where 

the subscript "x" refers to either "d" or "g" [Bricaud et al., 1981; Roesler et al., 1989; Carder et al., 

19911. Owing to this similarity in spectral shape, these terms cannot be spectrally separated with the 
10 
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Figure 3. Absorption coefficients a&)/%(675) versus q(675) for each Moderate- 
Resolution Imaging Spectrometer (MODIS) ocean wave band of interest. The number 
at top right comer indicates wavelength, b. The lines are described by equation (8) using 
the parameters listed in Table la, and they represent the minimum sum-of-squares errors 
for modeled versus measured values of q(h)/a.J675). 

MODIS channels, so the a&) term is combined operationally with %(I), and both detrita, and CDO 

absorption are represented by %(I). The combined CDOM and detritus absorption term is thus written 

(9) 
-S(A-400) 

ag (A) = ~ ~ ( 4 0 0 )  exp 

where S is empirically determined. Many researchers have reported that Sa = 0.01 1 nm-', on average 

[Roesler et al., 19891. For the GOMEX and COLOR cruises, an average value of 0.017 nm-I was 

measured for S,. Values reported by F. Hoge (personal communication) for the Sargasso Sea were 

somewhat higher as are those found near swampy regions of the Gulf of Mexico. The algorithm 

performance was optimized by varying S,, with the value 0.017 nm-l providing the smallest residual error 

compared to field measurements (Table 1 b). The increase in S is thought to account in part for the lack of 

gelbstoff fluorescene in the algorithm, which increases L(412) [e.g. see Mobley, 19941. 

As a final note on the R, model, Eqs. 5-9 are written in a general way to emphasize that the 

values of the parameters &, XI, Yo, Y1, a,,, al, and S are not meant to be absolute. They should be 

updated and changed as more data become available. These parameters may also be changed with region 

and season to optimize algorithm performance. 
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3.1.2.4 Inverting the Model 

All of the pieces of the reflectance model are now in place. Via Eqs. 2-4, and 5-9, R,(h) can be 

expressed solely as a h c t i o n  of the 'konstant" term, R4443), R,(488), R,(551), %(675), and %(400), 

given values for the parameters for Xo, XI, YO, YI, %(I), al(h), and S. I-@) from MODIS can be 

converted into R,(h) as mentioned previously. Then, for each pixel, the R, model equation can be 

written for each of the 5 available MODIS wavebands yielding five equations written in three unknowns: 

the "constant" term, %(675), and ~ (400) .  

Using spectral ratios of R, eliminates the "constant" term, since it is largely independent of 

wavelength. In principle, two spectral ratio equations can be used to solve for the two remaining 

unknowns, h(675) and a.&400). Based on the shape of the absorption curve for phytoplankton versus 

those for CDOM and detritus, equations using spectral ratios of 412:443 and 443551 for R&) should 

provide a good separation of the two absorption contributions. Our two equations are 

The right-hand side of each equation is a function of %(675), %(400), R,(443), R,(488) and R,(551). 

Since the R, values are provided on input, we now have two equations in two unknowns. The equations 

can usually be solved algebraically to provide values for q(675) and %(400). The computational method 

of solving these equations is described in Section 3.2. 

For waters with high concentrations of CDOM and chlorophyll, L(412) and L4443) values are 

small, and the semi-analytical algorithm cannot perform properly. It is thus designed to return values 

only when modeled q(675) is less than 0.03 m-I, which is equivalent to [chl a] of about 1.5-2.0 mg m-3. 

Otherwise, an empirical algorithm for [chl a] is used, which is described in Section 3.1.2.6. 

3.1.2.5 Pigment Algorithm for Semi-analytical Case 

When the semi-analytical algorithm returns a value for a,(675), [chl a] is determined via a direct 

relationship to this value. This step requires knowledge of the chlorophyll-specific absorption coefficient 
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for phytoplankton at 675 nm, a,*(675), for the bio-optical domain involved. Bricaud et al. [ 19951 

demonstrated a wide range of values for a,*(675) using a global data set. If only surface values for waters 

in a more limited bio-optical domain (e.g., tropical and subtropical waters) are examined, however, this 

variability is greatly reduced. Phytoplankton found in high-light environments, for example, have 

relatively low concentrations of light-harvesting accessory pigments and relatively high concentrations of 

photoprotective pigments compared to plants found in samples from high latitudes, upwelling centers, or 

deep in the euphotic zone. Therefore the effects of accessory pigment absorption on the variability of the 

largely chlorophyll a dominated red peak at 675 nm are small in high-light environments. Furthermore, 

photoprotective pigments do not absorb light at 675 nm, and so they do not affect a,(675), even if they 

are present in large quantities. 

To evaluate variations of ~ ~ ( 6 7 5 )  with [chl a] for subtropical to tropical waters, we developed a 

data set to explore the more limited variation in surface values of a,*(675) under high-light conditions 

(see section 4.2.1 for methodology). This data set came from surface-water samples from several cruises 

in the Gulf of Mexico (BONG 1, BONG 2, BOSS 1, and WFS) and one cruise to the Arabian Sea 

(TNO48). Linear regression of log([chl a])  versus log[a,(675)] yielded an equation of the form 

For the data set mentioned above, the regression resulted inpo andpl values of 56.8 and 1.03, 

respectively (n = 95, ?= 0.97 on the log-transformed values). This regression and the data are shown in 

Figure 4. Within a given bio-optical domain, we find only a very weak change in a,*(675) with [chl a].  

The exponent is close enough to 1 .O that little error occurs by linearizing the parameter values to 5 1.9 and 

1 .OO, respectively, for that domain. This suggests an average a,*(675) value of 0.0193 m2 (mg chi)-' for 

subtropical data sets. 

3.1.2.6 Pigment Algorithm for the Default Case 

When the semi-analytical algorithm does not return a value for %(675), we provide an empirical, 

two-wavelength algorithm for [chl a] to use by default. Aiken et al., [ 19951 found that the 

LW(488)/L,455 1) ratio is best for empirical [chl a] determination. We use an equation of the form 

W c h l  ale,, = Co + CI lW(Y35) + c2 [10g(r35)l2 + c3 [ W Y 3 5 ) 1 3  (12) 

13 



0.001 0.010 0.100 
a,(675), 1/m 

4 

3 
n 
E 

- 2  
0 

2 - 
E 
Y 

1 

0 
0.30 0.02 0.04 0.06 0.08 

a,(675). 1/m 

Figure 4. The [chl a] versus q(675) in (a) logarithmic scaling and (b) normal scaling. In 
both charts the dashed line is the equation [chl a] = 56.8 [a+(675)]'.03, which is the result of 
linear regression on the log-transformed values (n=96,?=0.97). 

where 

[chl a]- is called the "empirically-derived" or "default" chlorophyll a concentration, and CO, c1, c2, and c3 

are empirically derived constants. 

A subtropical and temperate summer data set was constructed from stations from the MLML 2, 

GOMEX, COLOR, TN042 and TN048 cruises, and from stations below 45 ON from the TTOlO cruise 

(Table 2). This data set includes both open-ocean and riverine-influenced stations. A cubic regression of 

log([chl a]) against lOg(r35) for measured [chl a] and R&) in this data set resulted in values of co = 

0.2818, c1 = -2.783, c2 = 1.863, and c3 = -2.387. The data and the regression line are shown in Figure 5. 
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Table 2. List of cruises with optical and bio-optical data collected by the University of South Florida (Carder data set) for initial tests 

Northern Gulf of Mexico 

Total number of stations is 104 

Figure 5. The [chl a] versus &(488)&(551) in log-log scaling. The 
dashed line represents a cubic regression on the log-transformed values 
and describes the default [chl a] algorithm. 

3.1.2.7 Weighted Pigment Algorithm 

Another consideration is that there should be a smooth transition in [chl a] values when the 

algorithm switches fiom the semi-analytical to the empirical method. This is achieved by using a 

weighted average of the [chl a] values returned by the two algorithms when near the transition border. 

When the semi-analytical algorithm returns an a,+,(675) value between 0.015 and 0.03 m-', [chl a] is 

calculated as 
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where [chl a]= is the semi-analytically-derived value and [chl aleq is the empirically derived value, and 

the weighting factor is w = [0.03-%(675)]/0.015. 

3.1.2.8 Phytoplankton and CDOM Absorption Algorithms for Default Case 

When the semi-analytical algorithm does not return a value for +(675), we provide empirical, 

multi-wavelength algorithms for +(675) and a&400) based on +(440) and a,&440) [Lee et al., 19981. 

Using these results, the empirical, default algorithms for high a,+,(675) values were determined by 

adjusting Lee’s results to 675 nm for phytoplankton and to 400 nm for gelbstoff, 

and for high %(400) values, 

where pij are log of the ratio of the remote sensing reflectance of MODIS channel i to channel j. 

Again, a weighted absorption algorithm similar to Equation 14 is used for each of these 

components to transition from the semi-analytical expression to the default expression. 

The precision for the total absorption coefficients calculated empirically by Lee et al., [1998] 

determined by the goodness of fit were 15.3 %, and for pigment absorption coefficients at 440 nm it was 

29.1%. Transfening to 675 nm and considering global data sets will likely increase this uncertainty to 

perhaps 35% to 40%. The uncertainty of default %(400) values is expected to be between 35% and 50%, 

although as with the semi-analytical values, there is a paucity of data sets to firm up these estimates. 

3.1.2.9 Total and Phytoplankton Absorption Coefficients 

The phytoplankton absorption coefflcients a,&) are calculated by inserting the modeled ~ ~ ( 6 7 5 )  

value into Eq. 8 and by using the necessary parameters ftom Table 1 a for each wavelength. The total 

absorption coefficients a&) are calculated by inserting the modeled ad400) value and the S parameter 
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from Table 1 b into Eq.9 to get adhi) and then combining the result with the a&) and a,(hi) values using 

Eq. 7 and Table la. 

3.2 Numerical computation 

Here ~ ~ ( 6 7 5 )  and uA400) are determined from Eq. 10 with the substitutions discussed in section 

3.1.2.4. Inverting one of the equations to isolate ud400) and substituting into the other equation, all terms 

are then moved to one side. This yields a function that depends only on ~ ~ ( 6 7 5 )  (given values for R, and 

the algorithm parameters fiom Tables l a  and lb). The value of ~ ~ ( 6 7 5 )  at which the function crosses zero 

is the solution we seek. This solution is determined computationally via the bisection method. A 33- 

element array of ~ ~ ( 6 7 5 )  values, scaled logarithmically from 0.0001 to 0.03 m-’ is created, and the 

function is evaluated at the two extremes. If the function changes sign between the two outermost values, 

a solution exists on the ~ ~ ( 6 7 5 )  interval. The function is then evaluated at the midpoint of the array, and 

the half in which the function changes sign becomes the new search interval. In this manner the solution 

interval, which will be two adjacent points on the ~ ~ ( 6 7 5 )  array, is determined in five iterations. Linear 

interpolation across the interval yields the semi-analytical ~ ~ ( 6 7 5 )  value, and ud400) is determined via 

either one of the ratio equations (Eq. 10) using the modeled value of 4 6 7 5 ) .  If the function does not 

change sign across the two outermost values, a solution cannot be obtained and a switch is made to the 

empirical, two-wavelength, default algorithm. 

When compared to an older method (look-up tables [Carder et d., 1991]), the bisection method 

gave identical solutions to within five significant digits for ~ ~ ( 6 7 5 )  and uA400), and the code ran in 75% 

of the time required by the version of the code based on the look-up table. 

The algorithm code is written in American National Standards Institute (ANSI) C. The program 

file contains about 300 lines of code and comments. It was developed and tested on a DEC Alpha 

machine. It was also tested on Silicon Graphics, SUN, and PC machines. All of the algorithm parameters 

listed in Tables 1 a and 1 b are read in fiom a file, so different parameter tables can easily be constructed 

for different applications (see below). The code is available upon request. 

4.0 Algorithm Evaluation (ATBD v.5: April 1999) 

4.1 Statistical criteria 

To evaluate algorithm performance, we generated statistics that are determined on log- 

transformed variables so as to provide equal weight to data fiom all parts of the pigment and reflectance 

ranges. The slope and intercept values are from type I1 RMA regressions. The RMS statistic described is 

based on the root-mean-square of the logarithm of the ratio of modeled-to-measured values [O ReiZZy et 

17 



al., 19981 and will be referred to here as RMS 1. We also generated values for 2 and root-mean-square 

error on the non-log-transformed (linear) data. This statistic will be referred to as RMS2 and is described 

by 

where xmdj is the modeled value of the ith element, X&,s,; is the observed (or in situ or measured) value of 

the ith element, and n is the number of elements. Note that 10RMs'-l.O = RMS2 if there is no bias between 

the modeled and measured data. We used two graphical means of evaluating algorithm performance, 

scatterplots of modeled versus observed values and quantile-quantile plots [O'ReilZy et al., 19981. 

4.2 Tests with University of South Florida Data 

4.2.1 Methods 

We initially tested our algorithm with our own subtropical and temperate-summer data set, called 

the Carder data set (Table 2), since observed values of q 6 7 5 )  and %(400) are included wherever possible 

to accompany the observed R,(h) and [chl a] values. Also, 17 points from high-chlorophyll, high- 

scattering stations, mostly from the extended Mississippi River Plume region, are included. We later test 

the algorithm with global R&) and [chl a] data collected by international research teams and found in the 

NASA SeaI3ASS bio-optical data archive [Hooker et al., 19941. 

R,(412), R,(443), R,(488), R,(531), andR,(551) for the Carder data set were derived from 

hyperspectral R,(h) measurements collected just above the sea surface (for measurement protocols, see 

Lee et al., (1996)) by weighting to simulate the MODIS band responses [Barnes et al., 19941. Most R&) 

measurements in the SeaBASS global database were collected from just below the sea surface following 

the protocols of Mueller and Austin [1995]. Both data types are combined in algorithm performance tests 

against the global data. 

All [chl a] values were determined fluorometrically [Holm-Hansen and Riemann, 1978; Mueller 

and Austin, 19951. The %(400) was determined by measuring the absorption of seawater filtered through 

a 0.2 pm pore-sized nylon filter in a spectrophotometer when compared to a MilliQ water blank [Mueller 

anddustin, 19951. 

The method used to determine absorption coefficients for particles and for detritus involves 

filtering as much as 4 L of water through a 25 mm diameter, Whatman glass fiber filter (GFF). The 

protocols used are those discussed in Mueller and Austin [ 19951 and are based on methods developed by 
18 



Shibata [1958], Roesler et al., [1989], Mitchell [1990], Nelson and Robertson [1993], and Moore et al., 

[ 19951. In order to estimate absorption coefficients from the optical density, OD, measurements, an 

optical path-elongation factor, called p, which is dependent upon OD, is employed. Recently, however, it 

has been shown that p varies with the particle size prevalent to a region [Moore et al., 19951. This 

happens because smaller particles get more deeply embedded into the filter, providing a greater 

absorption cross section for photons scattered back and forth across the particle substrate than do the large 

particles remaining at the surface of the pad. For our work we chose a p factor appropriate for small, 

subtropical particles that falls between two published p factors, one developed for detritus [Nelson and 

Robertson, 19931 and one for Synechococcus [Moore et al., 19951. Our p factor is 

Furthermore, we loaded the filter pads enough that the pad optical density exceeded 0.04 at 675 nm 

[Bissett et ai., 19971 for more accuracy in a&) measurements. 

4.2.2 Results 

The algorithm parameters used are shown in Tables l a  and lb. [chl a], %(675), and %(400) 

values were predicted by the semi-analytical algorithm with RMSl errors of 0.122,O. 13 1, and 0.252, 

respectively, and with RMS2 errors of 0.289,0.302, and 0.405, respectively (Table 4), for a largely 

subtropical or temperate-summer data set. 

The results are also shown as scatter and quantile plots (Figure 6). The crosses on the plots are the 

points determined with the semi-analytical portion of the blended algorithm, and the diamonds represent 

points determined with the default or empirical algorithm. The high-chlorophyll points extend nicely 

along the one-to-one line on both the scatter and quantile plots. The RMS 1 and RMS2 errors for [chl a] 

for this composite data set (n=104) were 0.132 and 0.300, respectively. 

The [chl a] and q(675) data appear to be quite evenly clustered about the one-to-one line on both 

scatter and quantile plots with no aberrant tails at either end. The %(400) points are predominantly below 

the one-to-one line and show a low bias. There are only 26 points in this plot because measured values of 

%(400) are infrequently available for comparison. These data were subtropical except for some late- 

summer, temperate data, and they had relatively large specific absorption coefficients. Thus they are 

representative of the domain we designated as unpackaged. 
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Figure 6. Algorithm performance for Carder data set, top observed versus modeled chl a, middle observed 
versus modeled %h(675), and bottom observed versus modeled ag(400) in left scatterplots and right quantile- 
quantile plots. The lines are the one-to-one lines, SA (crosses) indicates points that are calculated 
semianalytically or by a blend of semianalytical and empirical values, while EMP (diamonds) indicates 
points that are calculated empirically. 
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4.3 Tests using a global data set 

4.3.1 Data Set 

A large (n=9 19) global evaluation data set consisting of measured R, values at the Sea-viewing 

Wide-field-of-view Sensor (SeaWiFS) wavelengths and chlorophyll a measurements based on both 

fluorometric and high-performance liquid chromatography (WLC) methods was archived by the NASA 

SeaWiFS Project as the SeaBAM data set [O‘Reilly et al., 19981. These data came from various 

researchers around the United States and Europe and contain mostly subsurface R, values. In addition to 

these data, we have received 36 data points fkom the equatorial Pacific, consisting of R, measurements 

made above the surface (EqPac, courtesy of C. Davis), and we collected additional above-water data sets 

from the Southern California Bight (SCB) (April 1997 with G. Mitchell), near Hawaii (February 1997 

with D. Clark), and the Kuroshio edge of the East China Sea (May 1997 with G. Gong), which we have 

added to the global data set. This combination of 976 data points allows for algorithm comparisons using 

a data set consisting of both above-water and below-water points. 

The recent SCB data set provided an opportunity to compare above-water R, data with the 

historical California Cooperative Oceanic Fisheries Investigations (CalCoFI) SCB subsurface R, data set 

from the SCB. We also measured phytoplankton absorption spectra in the SCB in late winter to adjust 

a&) curve parameters, providing a more “packaged” parameterization (Table 3) for modeling the 

multiyear CalCOFI data set of subsurface R, values and similar eastern boundary environments. 

4.3.2 Numerical Filters 

Since many different locations and sensors were involved in compiling the SeaBASS data 

collections and as many as eight separate upwelling and downwelling sensor channels must be well 

calibrated to provide accurate spectral ratios of Rn for the semi-analytical algorithm, an attempt was made 

to select an initial core set of data consistent with case 1 waters and with each other. Also, an attempt was 

made to partition the data sets into two regions, ones where little pigment packaging is to be expected 

(e.g., high-light, non-upwelling locations in warm, tropical and subtropical waters) and one where more 

packaging might be expected (e.g., eastern boundary upwelling, and non-summer high-latitude data). To 

assist in this task, each SeaBASS data set was individually examined. 

Some of the data sets were composed of data largely falling into a single type of bio-optical 

domain according to the numerical filters discussed below. Others spanned two or more domains. Data 

sets falling primarily into the domain where the pigments appeared to be relatively unpackaged with 

significant photoprotective pigments [e.g., high ~ ~ ‘ ( 4 4 3 )  and high a,(443)/~,(675)] were tested using the 

semi-analytical algorithm with the parameters shown in Tables l a  and lb. 
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Table 3. Algorithm parameters used with the "packaged" 
and modified global data sets. All algorithm parameters 
not listed here are the same as in Table 1. 

The fmt numerical filter compares the data sets to the historic [Gordon et al., 19831 CZCS 

chlorophyll pigment algorithm [Chl a = 1.14 [r25]-1.71, rZ5 = R,(443)&(550)] to check for consistency 

with this classical algorithm for case 1 waters with relatively little packaging. Figures 7d, 8d, and 9d 

show scatterplots of observed [chl a] versus r25 for different sets of warm-water data, with the CZCS 

algorithm illustrated by the dashed line. The warm-water, subtropical and tropical data sets, with little in 

the way of pigment packaging and probably high photoprotective to chlorophyll ratios (Figure 7d), were 

found to be centered over the CZCS algorithm for pigment values less than about 1 mg m-3. 

When the CZCS algorithm was applied to data from high-latitude or eastern boundary upwelling 

locations where pigments are packaged into larger cells with more self-shading (Figure 8d), however, the 

CZCS-like chlorophyll a values were typically 50% to 90% lower than those measured. This effect of 

differing bio-optional domains on the performance of the CZCS-like algorithm suggests that regional 

algorithms are needed to obtain best results for different regions or seasons as suggested by Mitchell and 

Holm-Hansen [ 19911. 

This "filter" approach helped us separate various data sets into two domains, which we call the 

unpackaged-pigment domain and packaged-pigment domain. This type of domain-selection filter, 
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however, cannot be applied to satellite-derived data because of the need for measurements of [chl a]. 

Thus a second type of numerical filter was sought that was reliant on only space-derived data. 

The second numerical filter uses the ratios r12 = &(412)&(443) and r25 (Figures 7b, 8b, and 9b) 

and is applicable to satellite-derived data. For the Carder data set the line rI2 = 0.95 [r25]o.16 was used to 

separate high-gelbstoff data points (those below the line in Figure 7b) from the case 1 data. On the basis 

of the Carder a, data, the gelbstoff-rich case 2 data had a.&400) values typically in excess of the 

relationship 0.12 [chl a]'.' or a&443) > h(443). This line also separates case 1 data representative of more 

packaged domains from those representative of less packaged domains since the ratio r12 is less affected 

by packaging effects than is r25. Thus, for waters far from terrigenous influences, the second filter 

provides a flag for packaging effects. 

Case 1 waters with more packaged pigments from a traditional upwelling region (e.g., CalCOFI) 

were also examined using the second numerical filter. These data fell mostly below the filter line (Figure 

8b) in comparison to the unpackaged data, which fell mostly above the line (Figure 7b). Since pigment 

packaging reduces the absorption for a given concentration of pigments far more at 443 than at 55 1 nm, 

and somewhat more at 443 than at 412 nm [Morel andBricaud, 198 13, packaging and reduction of 

photoprotective pigments significantly increases r25 while increasing the rI2 ratio somewhat. This places 

packaged data points below the rI2 = 0.95 [r25]o.'6 line (Figure 8b) even without excessive gelbstoff 

concentrations, at least for points with r25 values in excess of a value of about 3.0. Filter 2, then, provides 

a space-based method for separating data points with packaged pigments from those with unpackaged 

pigments, at least for the oligotrophic end of the data sets. 

Filter 2, however, can be distorted by a poorly calibrated sensor or by inaccurate atmospheric 

correction, so it is inadvisable to use it exclusively as a packaging filter without some means of providing 

an independent check on its performance. A means of accomplishing this task is found in Section 5. 

4.4 Algorithm evaluation with the "unpackaged" data set 

Those data sets generally found to be consistent with the CZCS algorithm line and which were 

located primarily above the line r12 = 0.95 [r25]0.'6 for points where r25 > 3.0, were numerically classified 

as unpackaged, in reference to the pigment-absorption effects on the optics prevalent at those locations at 

the time of data collection. Those data sets with high-r15 points largely below the line were classified as 

packaged, and a test of a packaged algorithm is developed and discussed below. Those data sets with 

high-r,, points fairly equally divided by the line were withheld from the tests of both the unpackaged and 

packaged algorithm, but they were included as part of the test of a global algorithm developed and 

discussed below. 
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There are 287 data points in the unpackaged ensemble data set: 134 USF data points and 37 

EqPac, equatorial Pacific points, all measured above water and processed using the Lee et al., [ 19961 

protocols, and an additional 126 EqPac points, all measured below the surface using the MueIZer and 

Austin [ 19951 protocols. Of these points, 261 (91%) were processed by the semi-analytical portion of the 

[chl a] algorithm, yielding RMSl and RMS2 errors of 0.099 and 0.230, respectively (Table 4). The 

scatter (Figure 7a) and quantile (Figure 7c) plots overlay the one-to-one line at the ends as well as in the 

middle. For the log-transformed variables, the type I1 RMA slope was 0.999, the bias was 0.002, and the 

correlation coefficient was 0.873. When all 287 data points were considered using the semi-analytical 

algorithm plus the blended and empirical algorithms, RMS 1 and RMS2 errors were 0.108 and 0.242, 

respectively. The type I1 RMA slope was 0.973, the bias was -0.003, and I+? was 0.955. Note that for this 

unpackaged data set, the transition fi-om the semi-analytic to the default algorithm is reasonably smooth 

(Figure 7c). 

Table 4. Summary of regression statistics for each data set tested. The unpackaged data consists of the 
Carder, EqPac above-surface, EqPac below-surface, Taiwan, and MOCE3 data sets. The packaged data 
consists of the CalCOFI and CAL9704 data sets. The global data consists of the global evaluation data set, 
minus the Cota and U. Maryland data plus the high-chlorophyll Carder, EqPac above-surface, Taiwan, and 
MOCE3 data, and uses one set of average algorithm parameters for the whole data set. SA indicates that only 
the modeled values that passed the semi-analytical portion of the algorithm are used (including blended 
values). SA+EMP indicates that all modeled values-semi-analytical, blended, and empirical-are used. All 

atistics except RMS2 are calculated fi-a 

data set variable n 

Carder I chlSA I 86 

Carder 

Carder 

Carder 

unpackaged I chl SA I 261 

unpackaged I chlSA+EMP I 278 

packaged chl SA 303 

packaged chl SA+EMP 326 

global chl SA 883 

global chlSA+EMP 976 

n loglo-transformed variables. 

0.002 1.003 0.002 0.852 0.176 0.446 

0.003 1.003 0.002 0.913 0.174 0.440 
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Figure 7. Algorithm performance for and analysis of data sets passing the "unpackaged" numerical filter. (a) Scatterplot of observed 
versus modeled chl a (mg m"). The dashed line is the one-to-one line. (b) The rI2 versus r25, with the line, r12=0.95[r25]0.16, used to 
identify "unpackaged" case 1 data (above line). (c) Quantile-quantile plot of observed versus modeled chl u. (d) Observed chl u 
versus rZ5, with the coastal Zone Color Scanner (CZCS) algorithm line c = I . I ~ [ ~ ~ J ~ " ~ .  
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Table 4 provides a complete summary of these statistics. Note that since these algorithms are 

largely semi-analytical in nature and were developed based mostly upon Gulf of Mexico data for the 

parameterization, one would not expect to have slope values of 1 .OOO and bias values of 0.000. Note also 

that the ? values increased using the blended algorithm because of the extended range of chlorophyll a. It 

is important to note that RMS2 errors of less than 25% significantly exceed our accuracy goal of 35% or 

less. 

4.5 Algorithm evaluation with the "packaged" data set 

Several data sets within the global evaluation set were numerically diagnosed as coming from 

waters where the pigments were much more packaged than those from the warm, tropical and subtropical 

data sets evaluated earlier. The new packaged parameters, shown in Table 3, are used to define a slightly 

different, packaged algorithm for upwelling and winter-spring temperate regions. 

There are 326 points in an ensemble of multiyear, multiseason data sets from the California 

Current which we label as packaged. These consist of historical CalCOFI (n=303) and recent Ca19704 

(n=23) data which we recently collected with G. Mitchell. The CalCOFI R, data were subsurface 

measurements, while the Ca19704 data were above-surface collections. Three hundred and three points 

(93%) from this packaged data set passed the semi-analytical portion of the new algorithm, yielding 

RMS 1 and RMS2 errors for [chl a] retrieval of 0.1 1 1 and 0.268, respectively. The type II RMA slope 

was 0.999, the bias was -0.006, and the ? value was 0.917. The scatterplot (Figure 8a) overlays the one- 

to-one line, and the quantile plot (Figure 8c) is linear and overlies the one-to-one line but has a slight 

discontinuity near a chlorophyll value of 3. This indicates that some parameter modifications for the 

packaged algorithm are needed in this transition region. 

Using the blended algorithm on 326 data points, the ? increased to 0.95 1 while the other statistics 

remained about the same (Table 4). The RMS2 error of about 28% for the packaged algorithm also is 

better than our accuracy goal of 35% or less. 

4.6 Algorithm evaluation with a global data set 

To generate an algorithm to smoothly transition between regions and periods where there are 

packaged and unpackaged pigments, we developed a global data set combining the packaged, 

unpackaged, and other mixed data sets from the SeaBASS archive. This data set has 976 data points. We 

then developed a set of compromise parameters for this global-average algorithm, shown in Table 3, for 

use at times and places where packaging is unknown or transitional. For this data set and these average 

parameters, 883 (90.5%) of the points passed the semi-analytical portion of the algorithm, yielding RMSl 
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Figure 8. Algorithm performance for and analysis of data sets passing the "packaged" numerical filter. (a) Scatterplot of observed 
versus modeled chl a (mg m-'). The dashed line is the one-to-one line. (b) The rI2 versus rZs, with the line, r12=0.95[r2~]~.'~, used to 
identify "packaged" data (below line). (c) Quantile-quantile plot of observed versus modeled chl a. (d) Observed chl CI versus r25, with 
the Coastal Zone Color Scanner (CZCS) algorithm line C=l. 14[r25]-1.71. 
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and RMS2 errors in algorithm-derived [chl a] of 0.176 and 0.446, respectively. The type II RMA slope 

was 1.003, the bias was 0.002, and 2 was 0.852. Statistics for the entire n=976 set were similar, except 3 
was higher (0.913) (Table 4). The scatterplot (Figure 9a) looks evenly clustered about the one-to-one 

line, and the quantile plot (Figure 9c), though sinuous, overlays the one-to-one line for the most part. 

Again, the results from the semi-analytical algorithm fall below those for the default algorithm near the 

transition region. This can be alleviated by reducing the "blending" domain from 0.015 < q(675) < 0.03 

to 0.008 h(675) < 0.015. 

If we are unable to accurately specify the packaging domains of the world ocean, such a 

compromise global algorithm with about 44% accuracy is likely to be the best accuracy that can be 

achieved. This does not meet our accuracy goal of 35% or better, so a focused effort is being made to 

develop an accurate sorting mechanism based on space-derived data to define the bio-optical domains of 

the ocean on a spatial and temporal basis. 

5.0 Strategy for Implementation of Variable Package Parameters (ATBD v.5: April 1999) 

5.1 Nitrate depletion temperatures 

The biggest limitation to algorithm development for the global ocean is a paucity of bio-optical 

field data from around the globe that are complete with ancillary particle and gelbstoff absorption spectra 

and auxiliary data such as sea-surface temperature, salinity, and nutrients. These data are needed in order 

to assess the spatial and temporal variation in the key algorithm parameters: X, Y, S, and, most important, 

a&) and al(h). In order to derive [chl a], it is vitally important to be able to predict how the h(L)/[chl a] 

ratio varies. Thus we must study the effect of light history, which is related to season, cloudiness, and 

latitude, as well as nutrient history, which is influenced by mixed-layer depth, upwelling, river plumes, 

and offshore/onshore proximity. 

While algorithms appropriate for regions with strictly packaged or unpackaged pigments can 

reduce the uncertainty in chlorophyll a concentration from perhaps 45-50% to less than 30%, methods 

based upon space-derived data that determine when and where to apply the appropriate parameterization 

are still under development. One method using space-derived data (numerical filter 2) has already been 

discussed, but it is only definitive for waters where r25 > 3.0. Also, stations with high gelbstoff 

concentrations can cause confusion using this method, and inaccurate atmospheric correction can cause 

confusion using this method on any given day. For offshore oligotrophic to mesotrophic waters, however, 

it is a very useful diagnostic tool if used under clear atmospheric conditions. 
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Figure 10. Four-year (1982-1989, monthly mean values of sea-surface temperature 
(triangles), CZCS pigment (astericks), and nitrate-depletion temperature (diamonds) for 
locations near (top) the Gulf of Maine, (middle) Bermuda, and (bottom) Barbados. 

A second space-based approach uses the fact that unpackaged pigments are usually found in high- 

light, nutrient-poor waters where small-diameter phytoplankton cells predominate [e.g., Herbland et al., 

1985; Carder et al., 19861. Since dissolved nutrients cannot be detected from space, a nutrient surrogate 

was sought. Kamykowski [ 19871 developed a model that explained much of the covariance observed 

between upper layer temperatures and nitrate concentrations [e.g., Kamykowski and Zentura, 19861. D. 
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Kamykowski (personal communication, 1998) has since developed nitrate-depletion temperatures (NDTs) 

for the North Atlantic Ocean. The nitrate-depletion temperature is defined as that temperature at which 

nitrate could no longer be detected, at least using techniques of the era from about 1960-1 985. These 

NDTs provide a means to observe from space a variable that indicates when and where nitrate may be 

limiting phytoplankton growth and where upper layer production is dependent upon recycled nitrogen. 

Such phytoplankton are typically small [Herblundet ul., 19851 with unpackaged pigments [Carder et al., 

19861. 

To delimit regions of the North Atlantic Ocean that likely contain unpackaged pigments, we have 

compared sea-surface temperatures to Kamykowski's NDTs. Figure 10 shows annual trends in sea- 

surface temperature, CZCS pigment, and NDTs for the Gulf of Maine, Bermuda, and Barbados. The 

temperatures and pigments are 4-year (1 982-85) monthly averages fiom the Advanced Very High 
Resolution Radiometer (AVHRR) and CZCS sensors archived by the Jet Propulsion Laboratory, Physical 

Oceanography, satellite data archive (USA-NASA-PL-PODAAC-AOO5). Note that based on this 

approach, waters in the Gulf of Maine are rarely designated as being nitrogen limited, and those near 

Barbados are always designated as being nitrogen limited, while those near Bermuda are designated as 

being limited in the summer and unlimited in the winter-spring. Clearly, the Gulf of Maine is a lower- 

light, higher-nutrient environment than are Bermuda and Barbados, so the degree of packaging there is 

likely to be much higher. 

By analyzing bio-optical data in the SeaBASS archive, some preliminary functional relationships 

between the NDTs and pigment-packaging classifications for the north Atlantic Ocean were empirically 

derived using sea-surface temperature (SST) derived from the AVHRR satellite sensor: (1) unpackaged 

domain: SST > NDT + 3.0" C, (2) transitional or global domain: NDT +1.8" C < SST < NDT + 3.0" C, 

and (3) packaged domain: SST < NDT + 1.8" C. 

These domains for the months of February and August are shown for an El Niiio year (1 983) and 

a normal year (1 985) in Plate 1, based upon climatological sea-surface temperatures. Here the tropics and 

most of the subtropics apparently contain phytoplankton with unpackaged pigments, except in the 

northwest Afican, Peruvian, and equatorial upwelling regions. Here transitional and packaged pigments 

can be observed during part of the year. High-latitude regions are mapped with this method as packaged, 

gradually transitioning toward the equator into the unpackaged domain again. Note the marked difference 

in the domains between El Niiio and "normal" years, especially in the tropics and subtropics. 

Using AVHRR SST data from the physical oceanographic data archive, bio-optical data from 

SeaBASS for a cruise crossing several domains were sorted by domain using NDTs. Data for the 

transition period from spring to summer from the NASA SeaBASS archive were sorted into the three bio- 
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Plate 1. Bio-optical domains for the global ocean based on 1983 and 1985 monthly mean temperature compared to nitrate-depletion 
temperatures (NDTs) for (a) February and (b) August. Here black, blue, green, and yellow regions depict land, packaged, transitional, 
and unpackaged domains, respectively. 
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Plate 1. (Continued) 
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Figure 11. Comparisons of algorithm-derived and measured chlorophyll 
a values for (top) domain-sorted data for the North Atlantic Ocean during 
the spring-summer transitional period and (bottom) unsorted data. 

optical domains, and the appropriate algorithm parameterization was applied to derive chlorophyll a 

values. May Atlantic Meridional Transect (AMT 4) data along 20' W longitude, North Sea data and 

MLML2 data collected in July, and GOMEX1 and GOMEX2 data collected in April and June provide a 

diverse set of north Atlantic observations that were sorted by the NDT filter and processed. The results 

(Figure 1 1) are compared with those obtained by simple use of the global (transitional) algorithm. The 

RMS 1 and RMS2 errors for this diverse data set were 0.153 and 38%, respectively, for domain-sorted 

data, while the errors grew to 0.186 and 50%, respectively, when all were processed using global or 

transitional parameters for the algorithm without sorting by domain. 

Since the spring-summer transition and eastern basin, upwelling data are perhaps the least 

predictable in terms of pigment packaging, the error reduction observed of 12% is indicative of the 
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improvements that can be made by sorting ocean color data into bio-optical domains before applying 

algorithms. A community-wide effort to evaluate and modify this approach for other regions is an on- 

going task. 

5.2 Test of MODIS Algorithms with SeaWiFS Data 

A major end-to-end test of all MODIS Ocean Team products was undertaken under the direction 

of Dr. Robert Evans at the University of Miami using prototype MODIS processing software. SeaWiFS 

data were modified to match Level 1 data from the MODIS data stream and processed. This processing 

included atmospheric correction and production of Level 2,3, and 4 products [Hawes et al., 20001. All 

data products discussed under ATBD19 were successfully processed for a 2-day simulation of global 

data. These included %(675), %(400), [chl a ] ,  a(412), a(443), a(490), a(532), and a(551). These products 

were successfully passed on for processing of absorbed radiation by phytoplankton (MOD22) and 

fluorescence efficiency (MOD20). 

6.0 Expansion of bio-optical domains into high-latitude regions (ATBD v.6: May 2002) 

The dominant effects of pigment packaging when transitioning from tropical to temperate waters 

are included in the original version of the semi-analytic chlorophyll algorithm described previously in 

Section 3 and tested in Sections 4 and 5 [Carder et al., 19991. The “packaged parameter set, however, 

which was derived from Southern California temperate data significantly underestimates chlorophyll 

concentrations when applied to high-latitude data. 

Studies in the Southern Ocean indicate that chlorophyll-specific phytoplankton absorption 

coefficients are lower compared to Southem California waters due to increased pigment packaging and 

lower detrital absorption [Sosik et al., 1992; Reynolds et al., 20011. Since phytoplankton absorption 

typically has the largest impact on remote-sensing reflectance ratios, such differences in %*(A) cause the 

relationship between oceanic reflectance ratios and chlorophyll a concentration in both Antarctic and 

Arctic waters [Mitchell and Holm-Hansen, 1991; Mitchell, 19921 to deviate from empirically derived 

relationships generated from mostly northern mid- and low-latitude data [e.g. Gordon et al., 1983; 

0 Reilly et al., 19981. Indeed, the application of these latter two-band empirical algorithms to high- 

latitude CZCS and SeaWiFS imagery has consistently led to significant underestimations of chlorophyll 

concentration in the Southern Ocean [Sullivan et al., 1993; Moore et al., 19991 and the Bering Sea 

[Maynard and Clark, 1987; Muller-Karger et al., 19901. Furthermore, estimates of primary production 

derived from models based on satellite-derived chlorophyll fields may be significantly underestimated in 

polar regions as Antarctic and Arctic waters contribute 20% to global annual primary production 
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[Behrenfeld and Falkowski, 19971. 

Thus, the domain of “packaged” parameters, previously discussed in Section 4.5, is expanded in 

this section in order to reflect the inherent optical variability displayed in high-latitude polar waters. In 

addition, a smoother blending mechanism to transition between packaging domains is introduced that 

continues to be based on nitrate-depletion temperatures. 

6.1 Development of the ‘fully packaged” parameter set 

While the “unpackaged” parameter set remains the same as in Tables l a  and lb, the “packaged” 

parameter set has been revised. This domain is now based on Antarctic, Arctic and temperate upwelling- 

center data and will be referred to as the %lly packaged” parameter set. 

The shape of the %(h) spectrum was modified for the fully packaged parameter set using data 

collected during spring from the Bering Sea (MF0796) and from the Antarctic Polar Frontal Zone 

(REV9802). Measurement locations, dates, and sources are listed in Table 5. The parameters a&) to a3(h) 

from Equation 8 were optimized to provide a minimum sum-of-squares error for modeled versus 

measured values of +(h)/%(675). Figure 12 shows the data and the modeled fully packaged curve for 

h(443) along with the unpackaged curve for comparison. All fully packaged algorithm parameters are 

listed in Table 6. 

REV9802 

0.001 0.01 0.1 

Figure 12. The ratio %(443)/%(675) versus %(675) for high latitude data 
from the Bering Sea (MF0796) and the Antarctic Polar Frontal Zone 
(REV9802). The lines are described by equation 8 using the parameters 
listed in Table 1 a and Table 6. 
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Table 5. A list of cruises with optical and bio-optical data collected from southern and northern high latitude 
regions. When multiple R, and [chl a] values were available for the same date and time, the average value 
was used. 'n' is the number of stations with both Rn and [chl a] data available. ACPZ is the Antarctic Polar 
'rontal Zone. 

Cruise 

ROAVERRS97 

NBP97 1 1 

REV980 1 

REV9802 

P. Investigator 

Arrigo, K 

Mitchell, G. 

Mitchell, G. 

Mitchell, G. 

AMLR2000 I Mitchell,G. 

AMLR2001 I Mitchell, G. 

LTER Smith, R. 

MF0796 Carder, K. 

Be196 Cota, G. 

Lab96 Cota, G. 

Lab97 I Cota,G. 

Lab00 Cota, G. 

Institution 
~ ~~ 

NAS AIGSFC 

UCSD/SIO 

UCSDISIO 

UCSD/SIO 

UCSD/SIO 

UCSD/SIO 

UCSB 

USF 

ODU 

ODU 

ODU 
~ 

ODU 

ODU 

The relationship between %(675) and [chl a] was modified using Ca19704 upwelling-center data 

to reflect the lowest chlorophyll-specific absorption coefficients expected for phytoplankton cells from 

high-nutrient regions that are exposed to low-light levels. A PO coefficient of 79.4 in Equation 11 for hlly 

packaged waters is equivalent to using an +*(675) value of 0.0126 m2 (mg chi)-', which is close to the 

lower limits determined in previous studies [Bricaud et al., 1995; Cleveland, 19951. 

The default empirical chlorophyll algorithm parameters, q-, to c3, were modified using Cal9704 

and MF0796 data. Regression of loglo([chl a]) against 10g10(R,(488)/R,(551)) for measured [chl a] and 

R&) in this data set resulted in values of q-,=0.51, c1=-2.34, c2=0.40, and c3=0.00 (n=35) using Equation 

12, yielding RMSl and RMS2 errors of 0.102 and 25%, respectively. Figure 13 shows the data and the 

modeled fully packaged curve along with other high-latitude empirical expressions from the Southern 

Ocean [Awigo et al, 1998; Dierssen and Smith, 20001 and the Labrador Sea [Cota et ai., 20001. 
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Table 6. Semi-analytical algorithm parameters 
for unpackaged and fully packaged data sets. 

Parameter Unpackaged 

1 

ao(4 12) 2.20 1.02 

ao(443) 3.59 1.89 

ao(488) 2.27 1.24 

1.40 0.84 

a3(V 0.01 12 0.02 10 

I 

0.28 18 0.5 1 

~~ 

-2.3870 0.00 c3 

II CI I -2.783 I -2.34 

I1 c2 I 1.8630 I -0.40 

-0.00 182 -0.001 82 

2.058 2.058 

I YO I -1.13 I -1.13 

'A  CDOM slope coefficient, S, of 0.01 70 is used for Antarctic fully packaged 
data only. The slope for Arctic fully-packaged data shall remain 0.0225. 

38 



L 

10 

1 :  

0.1 4 

v Ca19704 
Carder "fully packaged" o.-.o Arrigo (diatpha) 

/-J...c] Arrigo (wy) 

0.01 , Dierssen+Smifh 
0.3 0.5 1 2 5 

RE(488)/R,(551 ) 

Figure 13. The [chl a] versus &(488)&(551) default empirical algorithm for the "fully packaged" 
pigment domain. The Carder " l l ly  packaged" line (solid thick) represents a quadratic regression on 
log-tranformed Bering Sea (MF0796) and Southern California (Ca19704) data. Also shown are high- 
latitude algorithms from the Ross Sea [Arrigo et al., 19981 for regions dominated by diatoms (dia) and 
Phaeocystis (pha) and by cryptophytes (cry), from the region west of the Antarctic peninsula [Dierssen 
andsmith, 20001, and fiom the Labrador Sea [Cota et at., 20001. Lines are plotted approximately for the 
original range of values only. 

The new "fully packaged" algorithm is very similar to the Cota et al. [2000] relationship for 

chlorophyll concentrations less than 5.0 mg m-3. At chlorophyll concentrations greater than 5.0 mg m-3, 

the relationship more closely resembles the Dierssen and Smith, [2000] line. The divergence of the 

Arrigo et al., [ 19981 diatom and Phaeocystis line away from the Cryptophyte line suggests that at high 

chlorophyll concentrations, no single empirical expression will perform accurately in the Southern Ocean. 

This is due to regional [Brody et al., 1992; DiTuIlio and Smith, 1996; Gofart et al., 20001 and seasonal 

[Moline et al., 19991 shifts in phytoplankton dominance together with the tendency of blooms dominated 

by a single class of phytoplankton to exhibit a large variability in %*(I). 

The slope coefficient, S, for the combined CDOM and detrital absorption term (Equation 9) was 

decreased for the fully packaged parameter set from 0.0225 to a value of 0.0 17. Applying this lower 

slope value with the Antarctic data optimized algorithm performance and is thought to account for the low 

chlorophyll-specific detrital [Sosik et al., 1992; Clementson et al., 20011 and CDOM [Reynolds et al., 

20011 coefficients observed in Antarctic waters and perhaps low photobleaching. Since Arctic waters 

exhibit higher diffuse attenuation coefficients for CDOM compared to Antarctic waters perhaps due to 

higher riverine input [Mitchell, 19923, we propose to continue using a slope coefficient of 0.0225 for 
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Arctic fully-packaged data and only use a value of 0.01 7 for Antarctic fully packaged data. 

The wavelength independent parameters (i.e. XO, XI, YO, and Y1) used in Equation 5 and 6 for 

determining the magnitude and shape of particulate backscattering in Equation 4 remain unchanged for 

the fully packaged parameter set. Although modeled [Dierssen and Smith, 20001 and measured [Rqnolds 

et al., 20011 results indicate that chlorophyll-specific particulate backscattering is lower in the Southern 

Ocean compared to northern mid- and low-latitude waters, Equation 5 corrects for this effect. Essentially, 

the lower green reflectance values (R455 1)) observed in high-latitude southern waters for a given 

chlorophyll concentration [Reynolds et al., 20011 shall yield lower bbp(551) values using this equation. 

6.2 Revised strategy for implementation of variable package parameters 

With the addition of the fully packaged parameter set, a new means for implementing the various 

packaging parameters within the semi-analytic algorithm is required. As the previous stair-stepping type 

of approach for transitioning between packaging domains based on nitrate-depletion temperature 

(discussed in Section 5.0) resulted in unrealistically, large chlorophyll variations in regions with sharp 

temperature changes (e.g. Florida Gulf Stream and upwelling regions) (data not shown), a smoother 

transition among the domains is needed. 

A blending mechanism identical to the one used to provide a smooth transition between the semi- 

analytic and empirical algorithm products (i.e [chl a], %(675), and +(400)) (discussed in Section 3.1.2.7) 

has been established by studying an intense upwelling environment off southern California. Most of the 

variability in pigment packaging was observed to be limited to a 5OC range about the nitrate-depletion 

temperature (NDT). The most packaged pigments there resembled %*(A) spectra observed during April in 

the Bering Sea data (Figure 12). Thus, phytoplankton absorption parameters from low-light and nutrient- 

replete polar waters (fully packaged) and parameters from high-light and nutrient-poor tropical/ 

subtropical and summer temperate waters (unpackaged) are designated as end members. A linear 

blending algorithm provides for the transition between the two end members. The algorithm is run first 

using both the unpackaged and the fully packaged parameter sets where NDT - 1.O"C < SST < NDT + 
4°C. Chlorophyll concentration is then calculated as 

where [chl a]"p is the unpackaged value, [chl a ] ~ ~  is the fully packaged value, and the weighting factor is 

w=[l.O + (SST-NDT)]/S.O. For regions outside this transitional domain, the fully packaged parameter set 
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is used where SST < NDT-1.0'C and the unpackaged parameter set is used where SST > NDT+4.O0C. 

Thus, for any satellite location, the SST is compared to the NDT, and the level of pigment packaging is 

defmed as either fully packaged, transitional, or unpackaged (Figure 14). The same approach is used to 

blend the unpackaged and fully packaged pigment domains for algorithm retrievals of a,+,(675) and 

ag(400). 
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I 
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pigments I I 
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SST-NDT (OC)  

Figure 14. Blending mechanism for transitioning between unpackaged and fully packaged 
pigment domain based on the difference between the sea surface temperature (SST) and the 
nitrate depletion temperature (NDT). The weighting factor used in Equation 19 for SST- 
NDT < -1  .O°C is zero, for-1 .O°C < SST-NDT < 4.0"C is between zero and one, and for SST- 
NDT > 4.0"C is one. 

Algorithm performance using the revised pigment packaging parameters together with the 

smoother blending strategy was first evaluated using the Ca19704 data set. Cold (-12'C), nutrient-rich, 

and chlorophyll-rich waters upwelled off the coast of California in April 1997 (Figure 15), displayed low 

%(443)/a,+,(675) ratios consistent with low-light, shade-adapted phytoplankton populations observed 

during April in the Bering Sea. The data were sorted into the three bio-optical domains (fully packaged, 

transitional, or unpackaged) based on SST's and NDT's using the new blending strategy, and the 

appropriate algorithm parameters were applied. The algorithm results are shown in Figure 16. The 

RMS1 and RMS2 errors were 0.1 16 and 3 1%, respectively, for domain-sorted chlorophyll data. The 

errors, however, increased to 0.148 and 39% for RMSl and RMS2, respectively, when average packaging 

parameters were used (e.g. Eq. 19 with a weighting factor of 0.5). Sorting ocean color data into bio- 

optical domains, therefore, reduced the error by 8% and allowed the algorithm to meet the 35% accuracy 
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Figure 15. Surface map of (a) Temperature ('C), (b) Nitrate concentration (pM 1-I),  (c) [Chl a] (mg m-3), and (d) 
a,&443)/%(675) for the California upwelling region (Ca19704) in April 1997. 

goal originally proposed for this algorithm. 

6.3 Algorithm evaluation of a high-latitude data set 

6.3.1 Data set 

A large multi-region, multi-season, and multi-investigator high-latitude data set (n=87 1) has been 

compiled that includes Antarctic data extracted from the NASA SeaBASS data archive, spring Bering Sea 

data (MF0796), and Arctic data kindly provided by G.Cota (ODU) (Table 5) .  This data set which includes 

R&) and fluorometrically determined chlorophyll concentrations is used to test the revised packaging 

parameters along with the new transitionhg strategy based on nitrate-depletion temperatures. Although a 

small subset of this data was used to derive the fully packaged parameter set being tested here, the only 

R&) data used was to determine the default empirical chlorophyll algorithm (Figure 13). Since 

thedefault empirical algorithm is only used for waters with chlorophyll values greater than -1 .O mg m-3, 

less than 1 % of the high-latitude data tested here were used during algorithm development. 
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Figure 16. Algorithm performance for domain-sorted California upwelling data (Ca19704) 
(a) observed versus modeled [chl a], (b) observed versus modeled aJ675), and (c) observed 
versus modeled q400). The lines are one-to-one lines, SA (+) indicates points that are 
calculated semi-analytically or by a blend of semi-analytical and empirical values, while 
EMP (0) indicates points that are calculated empirically. 
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Radiometric data adjustments were unnecessary for the three lowest MODIS wavelengths 

(R,(412), R,(443), and R,(488)) since instrument measurements were obtained within 2 nm of these 

wavelengths. The R,(565) data, however, collected using the Bio-Optical Profiling System (n=323) 

during the Long Term Ecological Research (LTER) program were converted to R,(555) using the 

equation developed in 0 Reilly et al., [ 19981. 

Data collected at low solar elevations with zenith angles greater than 70" were omitted. Also 

omitted were stations flagged with low R, values (R,(412) < 0.0008 s i '  and R,(551) < 0.001 s i ' )  or with 

inconsistent empirical and semi-analytic chlorophyll values. When the fully packaged parameter set was 

applied, the semi-analytical and empirical output products ([chl a], +(675), a.&400)) were blended 

according to Equation 14 when the semi-analytic algorithm returned +(675) values between 0.0075 and 

0.015 rn-'. This differs fiom the range used for unpackaged date (0.015 - 0.030 rn-') as a result of the 

lower chlorophyll-specific absorption coefficient observed in high-latitude waters compared to mid- 

andlow-latitude waters. 

The Antarctic data (ROAVERRS97, NBP9711, REV9801, REV9802, AMLR2000, AMLR2001, 

and LTER) consist of R, values determined from subsurface upwelling radiance extrapolated to just 

below the surface, L,,,(O- ,A), and downwelling irradiance extrapolated to just below the sea surface, 

Ed(O-,A). Remote-sensing reflectance just above the sea surface, R,(O+,A), was calculated using the 

following equation: 

where 0.54 and 1.04 are transfer coefficients across the air-sea interface for L,,, and Ed, respectively 

[Austin, 19741. All of the Antarctic data except for that collected during the AMLR2000 and AMLR2001 

cruises are corrected for ship shadow effects. 

The spring Bering Sea data set (MF0796) includes hyperspectral R&) measurements collected 

just above the sea surface and processed according to Lee et al., [1996]. Cota's Bering Sea (Ber96), 

Labrador Sea (Lab96, Lab97, and LabOO), and the Gulf of Alaska (Goa97) R, data were calculated using 

Equation 20 fiom subsurface L,,,(h) and E@) data. 

The in situ chlorophyll concentrations for the entire high-latitude data set ranged between 0.06 

and 40 mg m-3. Mean and median values for the Antarctic data are 2.9 mg m-3 and 1.4 mg m'3, 

respectively. Similar values for the Arctic data (2.5 mg m-3 and 1.5 mg m-3, respectively) were observed. 

Data collected in the Southern Ocean represent the majority (92%) of the high-latitude data set. Most of 

these data (87%) were collected west of the Antarctic peninsula (LTER) between 1991 and 1999 and over 
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95% of the data were collected between November and February. Since the majority of the Antarctic data 

were collected either near coastal polynas greatly influenced by sea ice meltwater (i.e. Ross Sea) or 

adjacent to continental margins (i.e. north and west of the Antarctic peninsula), the Antarctic data set over 

emphasizes bloom-dominated regions and under emphasizes oligotrophic regions influenced by the major 

circumpolar currents. 

63.2 Antarctic data 

Compared to the two-band empirical CZCS algorithm [Gordon et al., 19831, the Antarctic data 

exhibited higher R,(443)/Rm(551) ratios on average for a given chlorophyll concentration (Figure 17d). 

This may be attributed to lower %*(I) due to increased pigment packaging, decreased chlorophyll-specific 

detrital and CDOM absorption, and decreased chlorophyll-specific backscattering compared to northern 

mid- and low-latitude data where the CZCS algorithm was developed [Sosik et al., 1992; Dierssen and 

Smith, 2000; Reynold et al., 20011. The first two factors would result in elevated R4443) values while 

the third factor would result in decreased b(551) values. 

Lower chlorophyll-specific detrital and CDOM absorption relative to values from northern mid- 

and low-latitude waters is also evident in the high RTS(412)&(443) ratios exhibited at high chlorophyll 

concentrations (or low &(443)&(55 1) ratios) using the second numerical filter discussed in Section 

4.3.2 (Figure 17b). The R,(412)&(443) ratios are higher than those observed in the global data set 

(Figure 9b) as CDOM and detrital absorption increase at a slower rate with increasing chlorophyll 

concentration causing R4443) to decrease faster than b(412). At low chlorophyll concentrations (or 

high Rm(443)&(551) ratios), the Antarctic data fall mostly below the line r12=0.95[r25]0.16 similar to the 

Southern California upwelling data (Figure 8b) and are consistent with pigments derived from a highly 

packaged pigment domain. 

Since sea-surface temperatures were not available for the Antarctic data set, the semi-analytic 

algorithm was run using the fully packaged parameter set only. The scatterplot of measured versus 

modeled chlorophyll concentrations overlies the one-to-one line (Figure 17a). Similarly, the quantile- 

quantile plot (Figure 17c), though sinuous, overlies the one-to-one line quite well for chlorophyll 

concentrations less than 10 mg m-3. At chlorophyll concentrations greater than 10 mg m-3, the increased 

scatter and bias may be attributed to the unique optical signatures associated with monospecific blooms 

(i.e. Figure 13) and is most likely the main reason why the default empirical algorithm fails to perform 

accurately here. 

Processing the Antarctic data using the SeaWiFS OC4 (version 4) empirical algorithm [O Reilly 

et al., 20001 results in significant underestimations of chlorophyll concentration between -0.2 and 10 mg 
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Figure 17. Algorithm performance for and analysis of the Antarctic data set. (a) Scatterplot of observed versus modeled chl u 
(mg m") calculated semi-analytically (f) and empirically (0). The dashed line is the one-to-one line. (b) The rI2 versus r25 
relationship with the line, rI2 = 0.95[r25]o.'6. (c) Quantile-quantile plot of observed versus modeled chl u. (d) Observed chl u 
versus r25, with the coastal Zone Color Scanner (CZCS) algorithm line ~ = 1 . 1 4  [r25]-1.7'. 

m-3. Errors such as this are readily apparent using graphical algorithm evaluation criteria (Figure 18). 

Statistically, however, the RMS2 error generated from non-log-transformed data is erroneously low due 

to the large bias (-0.267) that exists between the modeled and measured data (Table 7). Since the RMS2 

error (Equation 17) does not place equal weight on underestimates as on overestimates, and fails to 

provide the same error estimate when regressing X against Y as when regressing Y against X, we now 

linearize the RMS 1 error generated from log-transformed data as follows 

RMS,,, = 0.5*[(10RMS-1)+(1-10-RMS)] (2 1) 

The RMS 1, RMS2, and RMSIin chlorophyll retrieval errors for the Antarctic data (n=87 1) using 

the semi-analytic algorithm were 0.22, 0.72, and 0.53, respectively. The RMS1, RMS2, and RMSli, 

errors using the SeaWiFS OC4v4 algorithm for the Antarctic data were 0.35,0.60, and 0.89, respectively. 
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0.398 0.537 

Table 7. Summary of regression statistics for each data set tested. The Antarctic data set consists of the 
following cruises: ROAVERRS97, NBP9711, REV9801, REV9802, AMLR2000, AMLR2001, and LTER. 
The Arctic data set includes cruises in the Bering Sea (MF0796 and Ber96), the Labrador Sea (Lab96, Lab97, 
+ LabOO), and the Gulf of Alaska (Goa97). All statistics except RMS2 are calculated from loglo-transformed 
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Note, once again, that the RMS2 error is erroneously low when using the OC4v4 algorithm compared to 

when applying the semi-analytic algorithm due to the aforementioned large bias. This bias causes the 

linearized fractional error, RMSli,, for OC4v4 to be -1 70% higher than that for the semi-analytical 

algorithm. A bias of 27% for OC4v4 indicates that SeaWiFS-derived chlorophyll concentrations may 

perhaps be 2530% low during austral summer which could result in similar underestimations of primary 

production and COz uptake for the Southern Ocean. 

6.3.3 Arctic data 

The Arctic data are similar to the Antarctic data when plotting chlorophyll u concentration versus 

R,(443)Rn(55 1) (Figure 19d). The majority of the stations had higher reflectance ratios for a given 

chlorophyll concentration compared to the CZCS algorithm [Gordon et al., 19831. Coastal stations in the 
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Figure 19. Algorithm performance for and analysis of the Arctic data set. (a) Scatterplot of observed versus modeled chl a 
(mg m”) calculated semi-analytically (+) and empirically (0). The dashed line is the one-to-one line. (b) The rI2 versus rzs 
relationship with the line, r12 = 0.95[r2~]~.’~. (c) Quantile-quantile plot of observed versus modeled chl a. (d) Observed chl a 
versus rzs, with the Coastal Zone Color Scanner (CZCS) algorithm line C=I. 14 [rZs1-’.’’. 
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Labrador Sea that were dominated by diatoms exhibited reflectance ratios that deviated the most from the 

CZCS line. Compared to the open-ocean stations in this region, the waters were colder and less saline 

perhaps due to ice-edge melting. Also, chlorophyll-specific phytoplankton absorption coefficients were 

relatively low and consistent with other studies of diatom-dominated waters in this region [Lutz et al., 

19961. 

The spring Bering Sea data (MF0796) also exhibited relatively high reflectance ratios for data 

collected offshore of the lOOm isobath with ag(443)/%h(443) ratios less than 2. Spring stratification due to 

increased thermal heating and decreased wind mixing events had not yet occurred. Vertical profiles of 

temperature and salinity exhibited a well-mixed water column indicative of nutrient-replete conditions 

and favoring the growth of large, shade-adapted diatoms containing heavily packaged pigments (Figure 

12) [Goering and Iverson, 19811. Stations located inshore of the lOOm isobath with %(443)/%4443) 

ratios greater than 2, however, exhibited reflectance ratios more consistent with the CZCS line. Such a 

tendency for increased pigment packaging to increase blue-to-green reflectance ratios but then be offset 

by increased %(443)/%h(443) ratios that decrease reflectance ratios is also evident in model simulations 

[Sathyendranath et al., 200 11. 

The summer Bering Sea (Ber96) and the fall Gulf of Alaska (Goa97) R,(443)/Rn(55 1) ratios 

overlie the CZCS line (Figure 19d). These data were collected in highly stratified waters with surface 

mixed layers -20m deep. Surface nutrient concentrations were depleted and daily solar fluxes were 

sufficient to favor the growth of picoplankton over microplankton [Odate, 19961. These nutrient-efficient 

and high-light-adapted phytoplankton species with higher chlorophyll-specific absorption coefficients due 

to decreased pigment packaging and increased photoprotective carotenoids are somewhat more similar to 

phytoplankton assemblages observed in coastal waters used in part to generate the CZCS algorithm. 

Chlorophyll-specific CDOM absorption was relatively low for Labrador Sea data and spring 

Bering Sea data collected offshore of the 1 OOm isobath. The chlorophyll versus %(400) relationship for 

these waters was lower than the relationship discussed in Section 4.3.2 for separating gelbstoff-rich mid- 

and low-latitude waters, but higher than that observed for Southern Ocean waters [Reynolds et al., 20011. 

As a result, &(412)&(443) ratios for these waters (Figure 19b) were higher than the nearshore 

(gelbstoff-rich), spring Bering Sea data, but lower than the Antarctic data (Figures 17b). 

As the Arctic data set encompasses a wide range of bio-optical domains ranging from the deeply- 

mixed (light-limited and nutrient replete), spring Labrador Sea to the highly stratified (high-light and 

nutrient depleted), summer Bering Sea, the data were sorted based on nitrate-depletion temperatures to 

determine the appropriate level of pigment packaging prior to applying the semi-analytic algorithm. 

Although the correlation between nitrate concentration and temperature may be weak in high-latitude 
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oceanic waters [Cora et al., 20001 since other factors (i.e. light, Si, Fe, etc.) may be responsible for 

limiting phytoplankton biomass accumulation, we believe that deviations is sea surface temperatures from 

nitrate depletion temperatures are also indicative of the degree of water-column stratification. Increased 

water column stratification may decrease the level of pigment packaging by maintaining the 

phytoplankton in a higher light environment near the surface. For instance, if phytoplankton found in 

high-latitude waters are light-limited rather than nutrient-limited, then the increased vertical stratification 

that occurs during late spring due to increased solar insolation, decreased wind stress, and in some cases 

increased ice-edge melting would reduce this light-limitation [Sverdrup, 1953; Mqnard and Clark, 1987; 

Mitchell et al., 19911. The ratio of photo-protective carotenoids to chlorophyll a would increase resulting 

in higher chlorophyll-specific phytoplankton absorption coefficients [Bricaud et al., 19951 typical of a 

less packaged pigment domain (i.e. summer Bering Sea). 

The scatterplot of measured versus modeled chlorophyll concentration (Figure 19a) overlies the 

one-to-one line, and the quantile plot (Figure 19c) is linear and overlies the one-to-one line. The three 

semi-analytically derived outliers (Figure 19a) are from coastal Labrador Sea stations (Lab97). 

Chlorophyll-specific absorption coefficients for these stations were very low. Sea-surface temperature 

and salinities were also low, perhaps indicative of more optically complex ice-edge meltwaters. Although 

the algorithm fails to perform well here, algorithm performance in the more areal-rich open-ocean waters 

was good. 

The RMS 1 and RMSli,, errors for the Arctic data (n=75) using the semi-analytical algorithm were 

0.17 and 0.41, respectively (Table 7). Processing the data using the SeaWiFS OC4v4 algorithm resulted 

in larger RMS1 and RMSli, errors of 0.22 and 0.54, respectively. These larger errors are primarily due to 

the large bias (-0.143) exhibited when using this empirical algorithm. The higher blue-to-green 

reflectance ratios for these data lead to significant underestimations of chlorophyll concentrations similar 

to those found for the Antarctic data. 

7.0 MODIS Terra data (v4.2.2, reprocessing 004) (ATBD v.7: January 2003) 

Using the MODIS Team-Leader computing facility (MODAPS), validated MODIS Terra data 

(Collection 4, “004 reprocessing”, released June 15,2002) are compared for Chlor-a-3 and Chlor-a-2 

algorithms. Chlor-a-2 is designed to be a MODIS surrogate for the SeaWiFS OC4 algorithm [O’Reilly et 

al., 20001. It can’t be exactly the same as OC4 because the 5 10 nm SeaWiFS band is unavailable using 

MODIS data. In this section, the spatial and temporal variability of the empirical (Chlor-a-2) and semi- 

analytical (Chlor-a-3) data products are analyzed. Also, Chlor-a-2 and Chlor-a-3 are compared to in 
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situ chlorophyll a concentrations provided by the SeaWiFS SeaE3ASS data archive [ Werdell and Bailey, 

20021 to evaluate algorithm performance. 
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7.1 Comparison of Chlor-a-2 and Chlor-a-3 

SeaWiFS radiance imagery has been used with the Carder et al., [ 19991 semi-analytic (SA) code 

for an upwelling site [Smyth et al., 20011 and for a river-plume site [Hu et al., 20031. In the upwelling 

case OC4 retrievals underestimated the high-chlorophyll values while the SA retrievals were much more 

accurate. For the river-plume case OC4 retrievals overestimated chlorophyll for gelbstoff-rich regions by 

as much as a factor of 2. The SA code with global parameters was generally within 35% of field values 

except where the absorption was dominated by gelbstoff, where mean error increased to about 41%. 

Comparing retrievals from the two algorithms for MODIS Terra global data, composite-averaged 

over the week starting 8 November 2000 (Figure 20), three modal values are apparent in Chlor-a-3 data 
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Figure 20. Histograms of weekly mean global chlorophyll concentration from MODIS for the week 
beginning 8 November 2000: (top) Chlor-a-3 and (bottom) Chlor-a-2 retrievals (courtesy MODIS 
Quality Assurance Browse Imagery, Terra collection 4). Mean values are 0.325 mg m-3 for Chlor-a-3 
and 0.2 14 mg m-3 for Chlor-a-2. Note the differences above 0.30 mg m-3. 
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at the following values: 0.07,O. 18, and 0.60 to 1.2 mg mS3. Chlor-a-2 modal values are found at 0.08 and 

0.15 mg m-3, suggesting similar mean values in the oligotrophic central gyres, but reduced Chlor-a-2 

values for more eutrophic waters. With no third mode for Chlor-a-2, its global mean value (0.214 mg m- 

3, is roughly 2/3 the global mean value (0.325 mg m-3) provided by Chlor-a-3. This underestimate is 

consistent with low SeaWiFS OC2 retrievals [Moore et al., 19991 and a 27% negative bias for OC4 

retrievals (see Figure 18) for the Southern Ocean field data. This example represents a period of time (e.g. 

fall bloom for the northern hemisphere and spring bloom for the Southern Ocean) when the weakness of 

the SeaWiFS OC2 and OC4 algorithms is most apparent. Note that historical, fall, globally averaged 

chlorophyll a values are 0.305 mg m-3 [Gregg and Conkright, 20011, very close to the Chlor-a-3 value. 

MODIS Terra chlorophyll images from the GESDAAC (Goddard Earth Science Distributed 

Active Archive Center) for Chlor-a-2 and Chlor-a-3 were composited in 39 km bins for December 2000 

and are shown in Plate 2. The subtropical gyre regions appear similar for the two images, and the northern 

modal retrievals (0.087 mg m-3) and southern modal retrievals (0.078 mg m-3) for the two algorithms are 

essentially the same. However, the global mean value for Chlor-a-3 (0.294 mg m-3) is higher than for 

Chlor-a-2 (0.23 1 mg m-3) because in part the high-latitude and equatorial upwelling regions for 

Chlor-a-3 are richer in chlorophyll a. 

Figure 2 1 shows that monthly mean values for Terra Chlor-a-2 and Chlor-a-3 are similar from 

March to June for austral fall for the southem hemisphere, but Chlor-a-2 is only 60% of Chlor-a-3 

during austral spring, largely due to the package effect. Chlor-a-3 values are larger for northern spring 

data, but smaller during summer and fall. Gelbstoff-rich runoff fiom northern rivers enrich summer water 

color, apparently increasing perceived chlorophyll retrieved by Chlor-a-2. Chlor-a-3 spectrally 

partitions this type of component from chlorophyll a, effectively minimizing the influence of river runoff 

on pigment overestimates. 

Dividing the globe even further, the following trends were observed. While low-latitude 

equatorial waters exhibit similar average mean chlorophyll-a concentrations for Chlor-a-2 (0.29 mg mW3) 

and Chlor-a-3 (0.27 mg m-3) (Table 8), Chlor-a-3 retrievals are higher in the eastern equatorial Pacific 

(Figure 5 )  due to upwelling. Average mean chlorophyll-a values for mid-latitude waters in the southern 

hemisphere are similar for Chlor-a-2 (0.18 mg m-3) and Chlor-a-3 (0.17 mg m-3), but Chlor-a-2 values 

are higher in the northern hemisphere. Again, gelbstoff-rich runoff from northern rivers enriches water 

color, possibly increasing perceived chlorophyll-a retrieved by Chlor-a-2. Monthly mean values for 

southern high-latitude waters are similar for March and June, but Chlor-a-2 is only 50% of Chlor-a-3 

during austral spring (Plate 2, Table 8), again largely due to the package effect. Northern high-latitude 

monthly mean chlorophyll-a retrievals also exhibit larger Chlor-a-3 values in the spring due to pigment 
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Plate 2. Global compisited maps (December 2000) ofchlorophyll a concentration (mg m-3) retrieved using empirical 
(Chlor-a-2; top) and semi-analytic (Chlor-a-3; bottom) algorithms from MODIS Terra radiometry. 

Northern hemisphere (chlor-a-3) 
Southern hemisphere (chlor-a-3) 
Northern hemisphere (chlor-a-2) 

0.0 
11121 2 3 4 5 6 7 8 9 101112 1 2 

Month of year (2000-2002) 

Figure 21. MODIS (reprocessed, Collection-4) Chlor-a-3 and Chlor-a-2 monthly 
means for Northern and Southern hemispheres from Nov-2000 and Feb-2002. 
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Table 8. MODIS Terra (reprocessed, Collection 4) monthly mean chlorophyll-a concentrations (mg m' 
I I 6OoS-35"S I 35°S-150S I 15"S-15% I 35%-60"N 1 

packaging. Differences between Chlor-a-2 and Chlor-a-3 values in this region, however, are smaller 

than for southern high latitudes as gelbstoff-rich runoff offsets the effects of pigment packaging 

[Sathyendranath et al., 20011. 

7.2 Validation of Chlor-a-2 and Chlor-a-3 

The validity of Chlor-a-2 and Chlor-a-3 data was evaluated using match-ups with ship data fiom 

the SeaWiFS SeaBASS data archive [ WerdeZI and Bailey, 20021. Chlorophyll imagery fiom MODIS 

Terra was compared to ship data following the general match-up exclusion protocol of McCIain et ai., 

[2000], but only quality-level zero MODIS chlorophyll a data were used. This eliminated data from shoal 

areas (< 30 m) and provided cloud-fiee data collected within three hours of the satellite overpass. 

Furthermore, for selected pixels within 100 pixels of the scene edge, 5-by-5 pixel means rather than 

traditional 3-by-3 median values were used to improve signal-to-noise ratios. Field chlorophyll values 

within the top 10 meters were averaged for comparison with satellite retrievals. 

Global match-up results are presented in Figure 22 for the Antarctic, Equatorial Pacific, 

California Current, western midpacific, and the West Florida Shelf. Note that both Chlor-a-2 (RMS = 

0.174) and Chlor-a-3 (RMS = 0.170) are accurate to less than 1 /5 log unit, more accurate than the OC4v4 

algorithm (RMS4.222) update [O 'Reilly et al., 20001 using an expanded global field of data. Ideally, for 

a 1 : 1 line, A=B=l .O. Although the RMS error values for the two algorithms are similar, Chlor-a-3 values 

for A and B are much closer to 1 .O. This suggests that the error due to overestimates by Chor-a-2 at low 

values and underestimates at high values are comparable to additional scatter about the line associated 

with Chlor-a-3. 

The error is reduced to 0.091 for Chlor-a-3 by removing the seven West Florida Shelf (WFS) 

points. In fact continental shelves with terrigenous runoff are not expected to exhibit typical NDT 

behavior. For the West Florida Shelf, upwelling of 18-20' C from below the Loop Current region is not 

unusual [Austin, 1970; Haddad and Carder, 19791, and convective overturn of surface waters in the 
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Figure 22. Relationships between in situ [Chl u] and MODIS-derived [Chl a] using a) Chlor-a-2, b) Chlor-a-3, c) 
Chlor-a-3 without the West Florida Shelf (WFS) points, and d) Chlor-a-3 with the WFS points that have been NDT- 
adjusted. Dashed lines are one-to-one lines and solid lines are linear regression lines in log-log coordinates. 

winter is expected to refresh nutrients with water having similar thermal properties. We found that using 

an NDT=19S0 C for the seven WFS data points in the match-up data set provided the best algorithm 

accuracy, lowering the error estimate when WFS points are included to RMS=0.088, or less than 1/10 of a 

log unit. This suggests, then, that data sets rich in continental shelf data points should be scrutinized on a 

regional basis. If that is not possible, shelf data can be addressed using a default “global” parameter set 

such as given in Carder et al., [ 19991, that minimizes extreme excursions due to the package effect. 

The RMSlm values for data in Figure 22 calculated using Equation 2 1 are 4 1 %, 40%, 2 1 %, and 

20%, respectively. These results are excellent, with nearly all values reaching the 35% goal set for 

MODIS chlorophyll a accuracies. Without stations from continental shelves, the accuracies easily surpass 

goal values for Chlor-a-3. With local NDT adjustments for coastal stations, sub-25% error values also 

appear attainable from Chlor-a-3. 
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8.0 MODIS Terra data (v4.10.11, reprocessing 041) (ATBD v.8: April 2004) 

MODIS Terra radiance data and data products were reprocessed (version 04 1, released October 

2003) and nitrogen depletion temperatures were updated prompting a second match-up analysis. 

8.1 Updated nitrate depletion temperatures 

Nitrate depletion temperatures for each 10" latitude and 10" longitude grid in the world ocean 

were calculated previously as the median temperature associated with nitrate concentrations less than 

5 p M  using data fkom the National Oceanographic Data Center (NODC) nutrient database [Kumykowski 

et ul., 19861. Recently, NDT's were updated by Kumykowski et ul. (2002) to obtain more representative 

values by calculating real cubic regression roots for each 10x10 degree grid from the same data. Since 

enormous gaps existed using this new approach, these values were regressed against the original NDT 

values [Kumykowski et ul., 19861 to provide adequate global coverage. 

These new NDT values were first contoured according to the methods described in Kumykowski 

et ul. (2002) in Surfer (Golden Software) using a combined variogramflcriging approach (Fig. 23a). 

Variogram modeling is a way to quantitatively assess the spatial continuity of data, taking into 

consideration the length scale, data repeatability, and anisotropy of the data. Using this technique, 

however, real changes in NDT (Le. upwelling regions) are smoothed out. 

Contouring the data without the variogram modeling produces a map that represents the original 

data better (Fig. 23b). However, the natural anisotropy of the data, whereby NDT's change with latitude 

more rapidly than they change with longitude, is not taken into consideration, creating contour lines that 

are not smooth enough. The variogram component that weighs the inherent trustworthiness of each data 

point, or the so-called "nugget effect", causes the kriging interpolation technique to emphasize overall 

data trends at the expense of individual data points. In order to create a balance between preserving the 

data and providing a smooth transition between data points, this nugget effect was reduced. 

Prior to re-contouring the data with a reduced nugget effect, changes in the original data 

[Kumyhwski et ul., 20021 were made for both the Southern Ocean and the Gulf of Mexico (Fig. 24). 

Since Southern Ocean NDT data were sparse resulting in dips in contour lines where data were not 

present (Fig. 23b), nitrate depletion temperatures at 75 O S  of 1" C were artificially added every 10 degrees 

where data were not present and were changed to 1" C where data where present. Also, the sparse nitrate 

depletion temperatures at 65 "S were omitted. 

Since pigment packaging on the west Florida shelf is controlled largely by riverine runoff (e.g. 

CDOM provides photoprotection) as opposed to winter overturn, nitrate depletion temperatures at several 

locations in this region were decreased and one point was omitted prior to contouring in order to provide 
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Figure 23. Global contour plots of nitrate depletion temperatures [Kumybwski et ul, 20021 a) with 
the variogram and b) without the variogram. 

lower values that were determined to be more appropriate for this region [Carder et al., 20041 (Fig. 24). 

Previous NDT values of -23°C for the west Florida shelf resulted in significant overestimations in 

chlorophyll a concentrations when applied to remote-sensing reflectance data collected during the 

Ecology of Harmhl Algal Blooms (ECOHAB) program. Decreasing the nitrate depletion temperatures in 

this location to -19.5"C decreased the level of pigment packaging obtained for winter and spring months 

when sea surface temperatures were generally less than 25"C, providing a stronger (3 increased fiom 83% 

to 92%), more linear (slope decreased from 1.06 to 1.02) correlation between measured and modeled 

chlorophyll values (n=155). During summer and fall months, unpackaged pigment parameters were 
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Figure 24. Nitrate deplection temperature values eC) for every 10" latitude by 10" longitude square for which data were 
available [Kumybwski et ul., 20021. Shaded symbols represent changes made to original values: triangles mark locations where 
data were omitted, circles depict values that were changed, and squares show where data points were added. 

obtained using these new NDT values since the NDT-SST threshold of 4°C was exceeded. This resulted 

in underestimations in chlorophyll concentrations. 

Thus, in order to prevent large variations in pigment packaging parameterization that are 

inappropriate for runoff-rich, tropical/subtropical regions, an alternative space-based approach for 

determining the degree of pigment packaging for such regions is required. Decreasing the NDT to 19.5"C 

and capping the weighting coefficient for pigment packaging (Fig. 14) at 80% resulted in an even stronger 

(?=93%) correlation between measured and modeled chlorophyll along with the lowest rms error (0.099 

compared to 0.168 for NDT=23"C and 0.150 for NDT=19S0C, respectively) (n=l55). Perhaps a future 

pigment packaging implementation scheme could cap the packaging weighting factor in these runoff-rich 

regions based on the degree of photoprotection provided by CDOM measured from space as the ratio of 

%(h)/$h(l)- 
The resulting global NDT contoured data (Fig. 25) were subtracted from quarterly MODIS Terra 

(reprocessing 041) SST data (Plate 3) and these values were binned into four packaging domains 

(unpackaged, transitional 1, transitional 2, and fully-packaged (Plate 4, Fig. 26). In order to provide a 
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Figure 25. Global plot of nitrate depletion temperatures ("C) contoured using combined kriging and variogrm (nugget effect set 
to 1/8" of original value) approach with changes made to original [Kamykowski et al., 20021 data. 

gradual shift between unpackaged and fully-packaged pigment domains, only so-called "endmember" 

waters are classified as unpackaged or fully-packaged while the majority of the ocean is classified as 

transitional. Since this transitional packaging domain spans 5°C (Fig. 26) and comprises -50-60% of the 

entire globe, this domain is split into two sections (transitional 1 where -1 < SST-NDT < 1.5 and 

transitional 2 where 1.5 < SST-NDT < 4.0) to better visualize global changes in pigment packaging. 

Global spatial and temporal nitrogen limitation patterns are analyzed using these plots (Plate 4) and 

comparisons are made between the new NDT parameters and implementations scheme and the old NDT 

values [Kamykowski et al., 19861 and the Carder et al. (1999) implementation scheme (Section 5.1, Plate 

1)- 
Changing the threshold level for the unpackaged pigment domain from SST-NDT > 3 "C to SST- 

NDT > 4 "C (Fig. 26) results in a much smaller area of the globe classified as unpackaged. While the 

entire tropical and subtropical region was previously classified as unpackaged during both winter and 

summer (Plate l), a narrow -30" latitudinal band is classified as unpackaged in the southern hemisphere 

during winter and in the northern hemisphere during summer using the new NDT values and 

implementation scheme. The south Pacific subtropical gyre is unpackaged year round as is the central 

Gulf of Mexico. 
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Plate 3. MODIS Terra monthly sea surface temperatures eC)  (Collection 4, reprocessing 041) for January 2001 (upper 
left), April 2001 (upper right), July 2001 (lower left), and October 2001 (lower right). 

Unpackaged 
SST-NDP4"C 

Transitional 2 
1 .  S0C>SST-NDP4"C 

Transitional 1 
- 1 "C>SST-NDT>lS"C SST-NDP- 1 "C 

Fully-packaged 

Plate 4. Bio-optical domains for the global ocean calculated as the difference between MODIS Terra monthly mean sea surface 
temperatures ("C) (Collection 4, reprocessing 041) and nitrate depletion temperatures ("C) [Kamykowski et al., 20021 modified 
in Figure 24 for January 2001 (upper left), April 2001 (upper right), July 2001 (lower left), and October 2001 (lower right). 
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Figure 26. Comparison between previous blending mechanism (Section 5.1) for 
transitioning between unpackaged and packaged pigment domains and current 
blending mechanism (Section 6.2). 

Regions classified as hlly packaged year round include the Southern Ocean, Benguelan Current 

upwelling system off the southwestern coast of Africa, and the north Atlantic (>75ON). The Peruvian, 

northwestern Africa, California, and equatorial upwelling regions are classified as fully-packaged during 

certain times of the year only. 

A basic assumption when determining the degree of pigment packaging associated with a given 

phytoplankton population based on the presence or absence of nitrate using NDT’s is that nitrogen is the 

only factor limiting phytoplankton growth and species succession. Indeed, it has been widely accepted 

that many areas of the ocean are not N-limited, but instead may be iron-limited (i.e. so-called high- 

nutrient, low-chlorophyll (HNLC) areas) (e.g. Martin et al,, 1988) or light-limited (e.g. Mitchell et al., 

199 1). 

Moore et al. (2002) shows that nitrogen is responsible for limiting phytoplankton growth in half 

of the world ocean during summer months. The other half of the ocean is limited by iron or silica. In the 

future, spaced-based surrogates for iron limitation [Kamykowski et al., 2002; Gregg et al., 20033 may 

possibly complement our existing strategy for inferring phytoplankton cell size and pigment packaging 

from space using NDT’s. Adjustments in chlorophyll-specific phytoplankton absorption coefficients may 

be required in both N-replete and Fe-limited waters. Regarding nutrient-replete, light-limited regions 

such as the Antarctic Circumpolar Current [Mitchell et al., 19911, the SST minus NDT index includes the 

effect of seasonal changes in solar radiation through changing SST over the seasonal cycle [Ohlmann and 
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Siegel, 20001. 

Since global biogeographic boundaries coincide with nitrate depletion temperature boundaries, 

our NDT scheme for adjusting a*,@) seems to work even though factors other than nitrate can influence 

pigment packaging. Decreased abundances of cyanobacteria, a major component of the picoplankton 

community, in high latitude waters with surface temperatures less than 10°C [Murphy and Haugen, 19851 

is largely responsible for the increase in average cell size that occurs from subtropical to polar waters 

[Odute and Muitu, 19881. Increased cell size contributes to increased pigment packaging, thus requiring 

lower chlorophyll-specific phytoplankton absorption coefficients. 

8.2 Validation of Chlor-a-2 and Chlor-a-3 

With the reprocessing of MODIS Terra radiance data (version 041) and the availability of 

additional match-up data from the SeaBASS data archive [ Werdell and Bailey, 20021 a second validation 

analyses was performed using match-up data compiled and made available by the NASA SIMBIOS 

program. Estimates of Chor-a-2 and Chlor-a-3 were derived using both shipboard in situ radiances (Fig. 

27) and MODIS Terra radiances (Fig. 28) and compared to in situ chlorophyll a concentrations (Table 9). 

MODIS Terra SST data and updated nitrate depletion temperatures from the previous section (Fig. 25) 

were used with the Chlor-a-3 algorithm. 

Note that exclusion of an apparently erroneous data point from the February 2002 Plumes and 

Blooms experiment in the Santa Barbara Channel, in which the field chlorophyll value was a factor of ten 

times lower than both the in situ- and satellite- retrieved chlorophyll concentrations, significantly 

improves accuracies for both algorithms. Vertical profiles of chlorophyll fluorescence collected at a 

nearby station indicate that chlorophyll concentrations at -20m were almost ten times higher than surface 

values in this region, perhaps indicating that this high chlorophyll layer was detected by the radiometers 

but was not sampled for the in situ measurement. Three additional data points from the Secret experiment 

(S201 and S301) were also omitted from the original data set (n=31) provided by the SIMBIOS Team 

because in situ radiances were not available. 

Chlor-a-2 has a linear RMS error of 52.0% when derived from field radiance data. This is due in 

part to inaccurate slope (0.84), bias (-0.090), and scatter (2 = 87%) factors for this log-log plot. 

Chlor-a-3, however, has a much lower linear RMS error of 25.3%, due in part to more accurate slope 

(1 .O 1) and bias (0.002) terms, and less scatter (2 = 96%) factors for this log-log plot. 

The 35% linear accuracy goal for chlorophyll a [e.g. McClain et al., 1998; Kilpatrick et al., 20021 

can be met with Chlor-a-3 given accurate water-leaving radiance retrievals. The 5%- accuracy goal for 

satellite ocean-color radiances [McClain et al. ,1998; Gordon and Voss ATBD 19991 is probably the best 
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Figure 27. Relationships between in situ [Chl u] (mg m-3) and a) Chlor-a-2 (mg m-3) and b) Chlor-a-3 (mg m") derived from 
shipboard in situ radiance data. One erroneous point (+) from the February 2002 Plumes and Blooms experiment was omitted 
due to strong vertical structure in chlorophyll. The dashed line is the one-to-one line. 

that can be achieved for SeaWiFS even with 3x3 pixel smoothing due to digitization errors [Hu et al., 

20011. Digitization noise will not limit the accuracy of MODIS in the same way because it uses 12-bit 

rather than 1 0-bit digitization, but calibration and atmospheric-correction accuracies can be limiting. Even 

with accurate field radiances, however, Chlor-a-2 does not achieve the 35% goal using the global 
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Figure 28. Relationships between in situ [Chl a] (mg m”) and a) Chlor-a-2 (mg m-’) and b) Chlor-a-3 (mg m-’) derived from 
MODIS Terra (Collection 4, reprocessing 041) radiance data. One erroneous point (+) from the February 2002 Plumes and 
Blooms experiment was omitted due to strong vertical structure in chlorophyll. The dashed line is the one-to-one line. 

database and algorithm parameterization presently available. 

The radiances from MODIS Terra were compared to ship-borne radiance data retrieved from the 

SeaBASS web site for the same data points (n=27) used for the chlorophyll algorithm validation (Figs. 27 

and 28). The highest RMS error was found for the shortest blue waveband (e.g. 65.8%, 18.19%, 15.6%, 
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Radiancesource 
Field 

1 MODIS 1 0.563 I 0.483 1 
Chlor a 2 Chlor a 3 

0.520 0.253 

Table 10. RMSli, errors for MODIS water-leaving radiances 
Collection 4, reprocessing 041). 

I All R,(412)/ I R,(4 12)/ 1 
Wavelength 

412 
443 
488 
55 1 

Rs(443) R,(443)>0.5 
(n=27) (n=24) 
0.672 0.302 
0.174 0.130 
0.155 0.146 
0.240 0.258 - 

and 24.5% for 412,443,488, and 551 nm, respectively) (Table 10). 

The extremely high error in normalized, water-leaving radiance (or remote-sensing reflectance) of 

the 412 MI band is mostly due to atmospheric correction. This conclusion is drawn from observations of 

a plot of the ratio of 412-to43 nm bands versus the ratio Of 44340 55 1 nm bands (Fig. 29). Here the in 

situ radiance data cluster closely about the line developed by Carder et al. (1 999) used as an initial 

separation of data points from waters with packaged and unpackaged pigments. Note that some of the 

MODIS radiance data line up with this line, some points line up parallel and below this line, and three 

data points depart at a sharp angle below the line. Note that excluding these three data points with 

R,(412)/RS(443) ratios less than 0.5 reduces the MODIS radiance errors to values of 29.5%, 14.3%, 

14.7%, and 25.3% for 412,443,488, and 551nm, respectively. 

Hawes et al. (2000) found the same type of point departure due to absorbing Saharan aerosols for 

a SeaWiFS scene of the Mediterranean Sea. Blue-absorbing aerosols remove Rayleigh sky radiance as 

well as water-leaving radiance at a rate much larger than do non-absorbing aerosols. When apriori 

calculation of Rayleigh sky radiance is made without inclusion of the blue-absorption aspects of the 

aerosols and used to correct for Rayleigh sky radiance, too much Rayleigh radiance gets removed in the 

correction process. This most heavily impacts the 412 nm band, followed monotonically by the other 

bands. 
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Figure 29. Relationship between %(412)&(443) and &(443)&(55 1) for in situ radiance 
data (open symbols) and MODIS Terra (Collection 4, reprocessing 041) radiance data 
(closed symbols). Radiance data with satellite measured F&(412)&(443) values greater 
than 0.5 (n=24) are represented with circles. Radiance data with satellite measured 
%(412)&(443) values less than 0.5 (n=3) are represented with squares. The dashed line 
represents the Carder et al. (1999) function b(412)&(443 = 0.95&(443)&(551)]0.'6. 

This suggests a philosophy to exclude data points for which severe atmospheric-correction errors 

have occurred. Reducing the data quality or even eliminating data points having an R 4 4  12)&(443) ratio 

value less than 0.5 removes them from consideration from the Level 0 or the highest quality data sets 

when binning data. This does not compromise actual Case 2 data as Carder et al. (1 999) show that even 

waters with significant CDOM have field ratios of &(412)&(443) typically larger than 0.6. Another 

option is to develop an equation for the data points parallel but below the Carder et al. (1999) line. Points 

falling below this line could be downgraded in quality or an alternative aerosol model for atmospheric 

correction could be utilized until values above the line are achieved. In this way a much narrower range of 

error is tolerated in the R&) and q h )  data sets, and a less biased and more-Gaussian error distribution 

is achieved for radiances. 

We have evaluated the effects of the scatter inherent in these data on chlorophyll a retrievals. 

Since only Chlor-a-3 uses the 412 MI MODIS channel, and it has the highest RMS difference (67.2%) 

relative to field radiances, one would expect this inaccuracy of MODIS radiances to more deleteriously 

affect Chlor-a-3 than Chlor-a-2. Figures 27b and 28b illustrate this effect, as the linear RMS error for 

Chlor-a-3 doubles from 25.3% to 48.8% (Table 9), when switching from in situ to MODIS Terra 
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(Collection 041 ocean processing) radiance data. The RMS error for Chlor-a-2 only increased fi-om 

52.0% to 56.3%. These latter values remain similar because the additional scatter in Fig. 28a offsets the 

bias in Fig. 27a. Different behavior of the same algorithm when applied to in situ or to satellite radiance 

data was also observed in the Mediterranean Sea by Ortenzio et al. (2002), demonstrating that 

atmospheric correction is the main source of error in ocean color. 

Note that removal of the three points with R,(412)Rs(443) less than 0.5 does not significantly 

change the Chlor-a-3 retrievals (rmsli, decreased from 0.483 to 0.474 for MODIS radiances and 

increased from 0.253 to 0.259 for field radiances). These changes were probably small because the field 

chlorophyll a values were high enough so that the semi-analytic algorithm had transformed into its 

empirical version above about 1 mg m‘3. Thus, only the 488 and 55 1 nm wavebands were used. 

Modeling the error fields as the sum of the squares of the in situ-derived chlorophyll algorithm 

error (Table 9) and each MODIS radiance error for the channels used (Table 10) provides the following: 

RMS(ch1a) = (cRMS(L(ki))’ + RMS(Algorithm)2)o.5 (22) 
i 

This simple model basically assumes that the various sources of error are random and uncorrelated. 

Chlor-a-3 retrieval accuracies expected for MODIS for various MODIS waveband accuracies can be 

calculated using this expression. 

Using the error model (Eq. (22)), the 25.9% error for Chlor-a-3 retrievals derived from field 

radiance data (n=24) can be simulated for MODIS Terra data: [0.3022 + 0.1302 + 0.258’ + 0.2592]0.5= 

49.2%. This is within 2% of the MODIS retrieval accuracy number. 

If all of the MODIS radiances were only 14% in error, then the Chlor-a-3 retrievals would be 

expected to be accurate within about 35%. If all radiances were only 10% in error, then Chlor-a-3 

retrievals would have about a 30% error. On the other hand, even if MODIS Terra radiance retrievals 

were perfect (e.g. matched field radiances), Chlor-a-2 retrievals would not be more accurate than 48.9% 

for this data set. A not-unreasonable &(A) error distribution of 20%, lo%, lo%, and 10% for regions 

with little in the way of absorbing aerosols or for atmospheric-correction algorithms that are highly 

filtered would produce Chlor-a-3 accuracies of 35.6% using Eq. 22. 

Since the goal of the ocean color community has been to provide MODIS and SeaWiFS radiance 

accuracies of about 5% except perhaps for the 412 nm band [e.g. Gordon et al., ATBD 19991, the 

objective of providing a Chlor-a-3 algorithm capable of delivering accuracies better than 35% appears to 

be achievable using Chlor-a-3 with satellite retrievals of water-leaving radiance or remote sensing 

reflectance values accurate to better than 14% or for radiances accurate to 10% for all bands but a 412 nm 
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band within 20% accuracy. 

To achieve more accurate radiances, especially with a coastally dominated data set, application of 

better absorbing-aerosol models appears to be needed. In the meanwhile, numerical filters may be used to 

flag pixels containing highly absorbing aerosols [Haws  et al., 20001. No amount of improvement in 

radiance accuracies, however, will allow Chlor-a-2 values to reach the goal of 35% accuracy for 

chlorophyll a. 

9.0 Conclusions 

A MODIS semi-analytical algorithm for chlorophyll a was tested using a total of 976 global data 

points from regions where the pigments were typically unpackaged, packaged, or transitional with 

appropriate algorithm parameters applied for each data type. This resulted in “Version 1 It of the semi- 

analyhc algorithm [Carder et al., 19991, which did not address the high-latitude regions with extremely 

packaged pigments (termed “fully packaged”) which are included in “Version 2“ of the semi-analytic 

algorithm. The algorithm has thus evolved to better represent the entire global data set. 

The “unpackaged” type consisted of data sets that were generally consistent with the case 1 CZCS 

algorithm and contained mostly tropical, subtropical, and summer temperate data. This algorithm type 

was parameterized using Gulf of Mexico and Arabian Sea data, and it continues to remain the same in 

both Version 1 and Version 2 of the algorithm. The Version 1 “packaged” type of pigment-absorption 

parameterization was consistent with pigments found in eastern-boundary upwelling data sets containing 

somewhat more packaged pigments, but not consistent with the fully packaged pigments found in high- 

latitude data. Note that at times for upwelling centers, some of the phytoplankton have pigments that are 

as highly packaged as found in high-latitude data sets, but that is not true for the general region. The 

packaged data sets studied with Version 1 were processed with the algorithm modified for phytoplankton- 

absorption parameters consistent with the Southern California Bight area. This resulted in two fairly 

equally divided data sets totaling 604 points. That left 372 data points that were not well enough 

characterized to classifl. 

The Version 1 , semi-analytical (SA) algorithm for chlorophyll a performed well on each of the 

data sets after classification, resulting in RMS 1 errors of 0.099 and 0.1 1 1 (e.g., 0.10 log unit) for the 

unpackaged and packaged data classes, respectively, with little bias and with slopes near 1 .O. RMS2 

linearized errors for the algorithms were 23% and 27% for the two classes, respectively. The SA 

algorithm for phytoplankton absorption provided data accurate to about 30%. 

While these numbers are excellent, one must bear in mind what misclassification does to the 

chlorophyll results. Using parameters for an average or transitional domain in the semi-analytical MODIS 
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algorithm with the global data set ( ~ 9 7 6 )  yielded an RMS2 error of 44.6%, while applying the 

unpackaged parameters on the global evaluation data set yielded an RMS2 error of 92%. So, without 

classification, the algorithm performs better globally using the average parameters than it does if 

misclassification occurs. 

For the difficult transition period between spring and summer or the regions between upwelling 

centers and the warmer offshore waters, a data set was tested that included the eastern boundary region of 

the North Atlantic. Nitrogendepletion temperatures were used with AVHRR-derived sea-surface 

temperatures to sort stations into packaged, unpackaged, and transitional domains. Comparing sea- 

surface temperature (SST) to the nitrate-depletion temperature (NDT) provides a means of estimating 

how packaged were the pigments for a given pixel. Cold SST values relative to NDTs suggest convective 

overturning or upwelling has brought cold, nutrient-rich water to the surface. Phytoplankton in these 

waters are typically large, contain high ratios of chlorophyll pigment per cell because they have recently 

experienced very low light levels, and exhibit low chlorophyll specific absorption coefficients. Solar 

heating warms this water, reduces the cell requirement for light-harvesting pigments including 

chlorophyll u while increasing the cell requirement for photo-protective pigments, decreases the size of 

cells that can remain neutrally buoyant, and results in an increase in the chlorophyll specific absorption 

coefficient. 

RMS2 errors dropped iiom 50% to 38% as a result of this data-sorting exercise. Since large 

regions of the subtropical and tropical Atlantic, Pacific, and Indian Oceans remain in the unpackaged bio- 

optical domain during all seasons and provide stable data accuracies from 24% to 28%, it is reasonable to 

expect that use of an NDT-based sorting algorithm with MODIS sea-surface temperatures to separate data 

into appropriate bio-optical domains will result in accuracies for the MODIS semi-analytical chlorophyll 

u algorithm that are significantly lower than our target value of 35%. 

This completed the evaluation of mid- to low- latitude data sets considered for Version 1 of the 

algorithm and used in Collections 1 through 3 for Ocean data found in the MODIS Data Active Archive 

Computer (DAAC) at NASA Goddard. Version 2 of the algorithm is discussed below and is used in 

Collection 4 of the ocean data found in the DAAC. Version 2 is summarized below. 

In Version 2, “fully packaged” pigment parameters were derived from high latitude polar and 

temperate upwelling data sets to replace the previously designated “packaged” parameter set. In addition, 

a smoother strategy for transitioning fi-om the unpackaged to the fully packaged pigment domain was 

introduced using sea surface temperatures and nitrate depletion temperatures. These transitions can be 

thought of as transitions between fall and winter (fall overturn) and spring and summer (spring bloom) or 

as transitions between upwelling and offshore waters. 
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The 5" C range between unpackaged-pigment conditions (warm waters) and conditions of hlly 

packaged pigments, provides a means of transitioning algorithm parameterization between the two 

extremes using the weighted average of chlorophyll retrievals from the two based upon SST-NDT values 

from -1" C to 4" C. Tests in the Southern California Bight transition region between upwelled and 

offshore waters indicate that errors are reduced from 39 to 3 1% using this method for transitioning 

between packaging domains. 

Compared to the SeaWiFS OC4 empirical algorithm, application of the MODIS Chlor-a-3 semi- 

analytical algorithm to Southern Ocean field data reduced the error in deriving chlorophyll concentration 

by almost a factor of two. Accuracy tests using MODIS satellite data (Collection 4, reprocessing 004) for 

November 2000 show that Chlor-a-3 retrievals of global mean chlorophyll a concentration are within 8% 

of the historical seasonal mean, while OCQlike empirical retrievals using Chlor-a-2 are but 2/3 of the 

seasonal mean. This suggests that Chlor-a-3 semi-analytical algorithm retrievals of chlorophyll a 

concentrations will lead to larger, more accurate pigment and subsequent global primary production 

numbers than are presently being retrieved using SeaWiFS and Coastal Zone Color Scanner data sets. 

Both the Chlor-a-3 and Chlor-a-2 algorithms used with MODIS Terra (Collection 4, 

reprocessing 004) data provide nearly identical modal chlorophyll values for the northern (0.087 mg m-3) 

and southern (0.078 mg m-3) central gyres in December 2000. However, the global mean value for 

Chlor-a-3 is higher (0.294 mg m-3) than for Chlor-a-2 (0.23 1 mg m"). This difference can be explained 

by the Southern Ocean where Chlor-a-2 values are on average about half of field and Chlor-a-3 values 

due to lower chlorophyll-specific absorption coefficients typical of this region. MODIS Terra retrievals of 

chlorophyll a using reprocessed (004) Collection 4 data are accurate to better than 41%. Removing data 

points from continental shelves improves Chlor-a-3 accuracies to 2 1 YO, while promoting shelf data using 

more appropriate nitrate-depletion temperatures can improve accuracies to about 20%. 

A second match-up analysis was performed in late 2003, using MODIS Terra Collection 4 

(reprocessing 041) data. Chlorophyll-a retrievals fiom in situ radiances compared to in situ chlorophyll-a 

concentrations are accurate within 52% (linear RMS difference) for Chlor-a-2 and within 25% (linear 

RMS difference) for Chlor-a-3. This establishes the inherent algorithm accuracy if all field 

measurements were perfect. Chlorophyll-a retrievals using MODIS radiances versus in situ chlorophyll a 

values were only 56% and 48% for Chlor-a-2 and Chlor-a-3, respectively. While Chlor-a-3 is 

significantly more accurate than is Chlor-a-2 when accurate radiances are used, the 67% nL44 12) 

retrieval error that affects Chlor-a-3 and not Chlor - a-2 causes satellite-derived Chlor-a-3 retrieval errors 

to decline more rapidly than Chlor-a-2 retrieval errors compared to chlorophyll retrievals from in situ 

radiances. Improvements in sensor calibration and atmospheric correction are the primary improvements 
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needed to permit chlorophyll a concentrations from space to reach the chlorophyll accuracy goal of 35%. 

It can be reached with Chlor-a-3 if accuracies of water-leaving radiance for all bands are within 14%, but 

no amount of improvement of radiance accuracies will allow Chlor-a-2 values to reach the goal of 35% 

accuracy for chlorophyll a. 

The reduction in accuracy between chlorophyll a retrievals using data from reprocessing Versions 

004 and 041 may be accounted for in part by the increase in the fraction of points that are coastal. While 

this affects ship and satellite retrievals equally in terms of Ocean constituents, it only affects the satellite 

retrievals in terms of aerosol constituents. Sea of Japan aerosols in the spring are often iron-rich from 

Gobi desert dust, while Southern California Bight aerosols are often carbon-rich from pollution. These 

absorbing aerosols would be greatly reduced were open ocean regimes better represented in the match-up 

data sets. Version 004 satellite data were averaged over a 5x5 pixel region to reduce the banding effects 

due to detector-polarization sensitivities at the edges of scenes, which also reduced any random noise 

effects by a factor of 5.  To have achieved better than 25% accuracies from MODIS Chlor-a-3 retrievals 

from Version 004 suggests that with more open-ocean data match-ups, with a better filter for absorbing 

aerosols, and with the improved polarization corrections being implemented by Miami investigators (R. 

Evans, personal communication), there is optimism that MODIS Terra retrievals of chlorophyll a using 

Chlor-a-3 can reach the 35% accuracy goal of the ocean color community. 

10.0 Lessons Learned 

1. Absorption effects of CDOM must be separated from that of phytoplankton to prevent 

overestimations in chlorophyll concentrations. The 412nm waveband is used in the semi-analytical 

algorithm to address this problem. The solution is based on the knowledge of the spectral shapes of 

CDOM and phytoplankton absorption coefficients. Chlor-a-2 retrievals in northern high-latitude 

waters rich in CDOM are generally higher than Chlor-a-3 retrievals most likely due to CDOM. 

2. Variability in the chlorophyll-specific absorption coefficients must be addressed. Comparing 

MODIS-derived sea surface temperatures with globally varying nitrate-depletion temperatures 

permits an empirical function to be developed that smoothly transitions chlorophyll-specific 

absorption coefficients from low values for high-latitude, winter-overturned, and upwelled waters to 

high values for tropicaVsubtropica1 and summer temperate waters. Chlor-a-2 retrieval inaccuracies 

are expected for upwelling and high-latitude regions, where underestimates compared to ship and 

Chlor-a-3 data can approach a factor of two. 
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3. Data sets rich in continental shelf data points should be scrutinized on a regional basis. If that is not 

possible, shelf data can be addressed using a default “global” parameter set that minimizes extreme 

excursions due to the package effect. 

4. Both empirical (Chlor-a-2) and semi-analytical (Chlor-a-3) algorithms are expected to be less 

accurate for layer systems such as river plumes and ice-melt plumes with monospecific blooms andor 

vertical structure. 

5 .  Detector striping, mirror side-banding, and polarization effects all can contribute to errors in MODIS 

data, although the effects were reduced by at least a factor of five in Collection 4. These are more 

likely to be apparent at the edge of high-resolution scenes abutting adjacent scenes, where different 

view angles compound the differences observed in residual effects due to atmospheric and 

polarization corrections. The 5-km binning of match-up imagery for comparison to field data at scene 

edges reduces the detector-striping and side-banding effects, and residual effects are not apparent in 

weekly or monthly 39 km composites of data used in global primary production estimates. 

6. Although validation stations encompass a wide range of environmental settings, with chlorophyll 

concentrations ranging from -0.05 to 4.0 mg m-3, match-up data are heavily concentrated in coastal 

regions and many parts of the ocean (e.g. central gyre regions) are yet to be assessed. Initial results, 

however, are very encouraging, especially for upwelling (California Current and equatorial Pacific) 

and high-latitude (Antarctic) locations. 

7. Since better than 25% accuracies of MODIS Terra (reprocessing 004) Chlor-a-3 retrievals have been 

achieved, there is optimism that MODIS retrievals of Chlor-a-3 can reach the 35% accuracy goal of 

the ocean color community with a) more open-ocean match-up data, b) a better filter for flagging and 

possibly correcting absorbing aerosols that are detrimental to atmospheric correction algorithms, and 

c) the improved polarization corrections being implemented by Miami investigators (R. Evans, 

personal communication). 

8. The accuracy of chlorophyll a algorithms is only as good as the normalized, water-leaving-radiance 

data provided to it. Improvements in sensor calibration and atmospheric correction are the primary 

improvements needed to permit chlorophyll a concentrations from space to reach the chlorophyll 
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accuracy goal of 35%. It can be reached with Chor-a-3 if accuracies of water-leaving radiance for all 

bands are less than 14%, but no amount of improvement of radiance accuracies will allow Chlor-a-2 

values to reach the goal of 35% accuracy for chlorophyll a. 

9. Since errors associated with the empirical Chlor-a-2 algorithm applied to field radiances are 

significantly worse than 35%, no amount of error reduction in satellite-derived, normalized water- 

leaving radiances will reduce Chlor-a-2 retrievals to 35%. Thus, to achieve an accurate long-term 

climate-quality global data set for ocean chlorophyll-a concentrations and derived products such as 

primary productivity, it is strongly urged that the ocean community reprocess SeaWiFS data using 

AVHRR sea surface temperature data and the Chlor-a-3 algorithm. 

11.0 Output Products 

Output products fkom MOD19 will include the following: 

1. 

2. 

3. 

4. 

Concentration of chlorophyll a for concentrations fkom .02 to 50 mg/m3 for optically deep waters. 

The absorption coefficient at 400 nm , %(400) due to gelbstoff or colored, dissolved organic matter. 

All absorption coefficients %(I) for 400 < h < 700 nm can then be estimated with knowledge of the 

spectral slope parameter S. 

The absorption coefficient at 443 nm, %(443), due to phytoplankton; this is passed along to MOD20 

for calculation of a&) for the visible spectrum as a contribution to the absorbed radiation by 

phytoplankton, ARP, used for fluorescence efficiency calculations. 

The sum of a,( I), a&), and +(I) provides the total absorption coefficient spectrum, adI), and the 

diffuse attenuation spectrum, k&) = a@) / cos qo. See MOD20. 
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